

Open Geospatial Consortium Inc.

Date: 2009-01-15

Reference number of this document: OGC 08-126 (used to be 99-105r2.doc)

Version: 5.0

Category: OpenGIS® Abstract Specification Topic Volume

Editors: Cliff Kottman and Carl Reed

The OpenGIS® Abstract Specification

Topic 5: Features

Copyright © 2009 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Document type: OpenGIS® Abstract Specification
Document subtype: Topic Volume
Document stage: Approved
Document language: English

The OpenGIS® Abstract Specification

http://www.opengeospatial.org/legal/

Revision History

Date Description
20 January 1998 renumber and update copyrights for 1998; add sections 2.11 and 2.12 (RFP1 status);

renamed 98-105r1
28 January 1998 update with CORBA conclusions; incorporate Grant Ruwoldt’s clarifications on feature,

feature type, feature collection , etc. into section 3; remove feature type and feature
collection object models; renamed 98-105r1a

11 January 1999 Updates to 98-105r1a from project document 98-056, approved December 1998;
remove references to “OID”; remove section 3.8 of 98-056 as suggested by author;
remove future work items as suggested by author of 98-056; reconstitute from 98-105r1
lost feature collection content; use new template format; update copyrights for 1999;
renamed as project document 99-105

15 February
1999

Added UML diagrams for FT_Feature as discussed in Atlanta TC, some informal text
representing future work in Section 3 moved to Section 4. Renamed 99-105r1, fixed
cross-references in Figure 2-14.

24 March 1999 Renamed to 99-105r2; updated for new document template following guidance of
change proposal 99-010 w/ friendly amendments to remove Section 1 boilerplate from
individual topic volumes, approved 9 February 1999; added Appendix C, from change
proposal 98-072 (approved February 9, 1999), and reference to it in Section 2.10.

August 2008 Bring into line with other OGC AS Topic Volumes and OGC Standards Baseline and
relevant ISO 19xxx series documents.

The OpenGIS® Abstract Specification Page i
Volume 5: Topic 5: Features

The OpenGIS® Abstract Specification Page ii
Volume 5: Topic 5: Features

This page is intentionally left blank.

Table of Contents
1. Introduction .. 1

1.1. The Abstract Specification ..1
1.2. Introduction to Features ..1
1.3. Information Models ..1
1.4. Terms and Definitions ..2
1.5. References for Section 1 ...2

2. The Essential Model for Features .. 3

2.1. General Notion of Geographic Information ..3
2.2. Introduction to the Notion of a Information Community4
2.3. The Real World ..5
2.4. The Conceptual World ...6
2.5. The Geospatial World ..7
2.6. The Dimensional World ...9
2.7. The Project World (or The “World View”) ...10

2.7.1. Introduction to the Modeling of Geospatial Features ... 10
2.7.2. Introduction to the Project World from the “Feature With Geometry” Point of View 10
2.7.3. Project World Feature Instances ... 11
2.7.4. Project World Feature Types ... 12
2.7.5. Project World Geometry ... 12
2.7.6. Project World Envelope .. 12
2.7.7. Project World Geometry Schema ... 12
2.7.8. Coordinate reference System ... 12
2.7.9. Project World Attribute-Value Pairs .. 13
2.7.10. Project World Attribute Schema and Feature Schema ... 14
2.7.11. Project Schema ... 15

2.8. The OpenGIS Point World ..17
2.9. The OpenGIS Geometry World ..18
2.10. The OpenGIS Feature World ..20

2.10.1. Feature Collections .. 21
2.10.2. Interfaces on Feature Collections .. 22
2.10.3. Background Notes on Feature Collections .. 22

2.11. Summary of the Nine Layer Model ...23
2.12. An Alternative Perspective to the Nine Layer Model24
2.13. Persistent Feature Identifiers ...25

2.13.1. Problem Statement ... 25
2.14. Resolving Scoped Feature Identifiers..26

2.14.1. Fundamental Ideas ... 26
2.14.2. Key concept ... 26
2.14.3. Key supporting concept .. 26
2.14.4. Principles .. 27
2.14.5. Resolver Services .. 28
2.14.6. Further Example .. 29
2.14.7. Hints .. 29
2.14.8. Well Known Scopes and URNs .. 29

The OpenGIS® Abstract Specification Page iii
Volume 5: Topic 5: Features

2.14.9. Uniform Resource Names .. 30
2.14.10. What resolution does .. 30
2.14.11. Resolution, discovery and access ... 30
2.14.12. Handles and descriptors ... 31
2.14.13. Permanent scope objects .. 31
2.14.14. Uniqueness of identifiers .. 31

2.14.14.1. The same feature can be in several Scopes ... 31
2.14.14.2. An identifier cannot be a leaf in more than one scope .. 31

2.14.15. Uniqueness and equality .. 31
2.14.16. Internal identifiers and internal scopes ... 31
2.14.17. Scope aliases ... 32
2.14.18. Published identifiers ... 32
2.14.19. FeatureCollection ... 32
2.14.20. Methods of Feature Identity Scope .. 32

2.15. Feature Identifier Change Registries: Incremental Publishing....................33
2.15.1. Conflict ... 33
2.15.2. Fundamental Ideas ... 33
2.15.3. New concept .. 34
2.15.4. Incremental Publishing .. 34
2.15.5. Incremental Publishing .. 34
2.15.6. Non-tree client network .. 35
2.15.7. Distributed Editing ... 35
2.15.8. Responsibilities and compositions.. 36
2.15.9. Local cleanliness .. 36
2.15.10. Out of control copying .. 36
2.15.11. Handles for servers ... 37
2.15.12. Identifier update packet .. 37
2.15.13. Relationships .. 37
2.15.14. GIS requirements ... 37
2.15.15. Last word .. 37

2.16. Status of the Feature Specification Error! Bookmark not defined.
2.17. References to Section 2 ...37

3. The Abstract Model for Feature, Feature Identifier, Identifier Scope,
Identifier Change Registry, Feature Repository and Feature
Collection .. 40

3.1. FT_Feature ..40
3.1.1. FT_FeatureType ... 40
3.1.2. FT_FeatureAttribute .. 40
3.1.3. FT_FeatureIdentifier ... 43
3.1.4. FT_Feature Persistence ... 43
3.1.5. FT_Feature Instances .. 43

3.2. FT_Identifier ...43
3.2.1. Characteristics of FT_Identifiers ... 43

3.3. FT_IdentifierScope ...44
3.3.1. Characteristics of FT_IdentifierScope .. 44
3.3.2. Methods of FT_IdentifierScope ... 44

3.4. FT_IdentifierChangeRegistry ...45
3.4.1. Change Registry Characteristics .. 45

3.5. FT_FeatureRepository ...45
3.5.1. FT_FeatureRepository Characteristics ... 45

3.6. FT_FeatureType ...45
3.6.1. FT_FeatureType Characteristics ... 45

The OpenGIS® Abstract Specification Page iv
Volume 5: Topic 5: Features

The OpenGIS® Abstract Specification Page v
Volume 5: Topic 5: Features

3.7. FT_FeatureCollection ..46
3.7.1. Characteristics of FT_FeatureCollections .. 46

4. Future Work ... 47

5. Appendix A: Well Known Structures ... 48

5.1. Well-Known Structures ...48
5.2. References to Appendix A ...48

6. Appendix B. The ISO TC211 General Feature Model 49

6.1. References ...50

1. Introduction

1.1. The Abstract Specification
The purpose of the Abstract Specification is to document a conceptual model sufficient
enough to allow for the creation of OGC Implementation Standards. The Abstract
Specification consists of two models derived from the Syntropy object analysis and
design methodology [1].

The first and simpler model is called the Essential Model and its purpose is to establish
the conceptual linkage of the software or system design to the real world. The Essential
Model is a description of how the world works (or should work).

The second model, the meat of the Abstract Specification, is the Abstract Model that
defines the eventual software system in an implementation neutral manner. The Abstract
Model is a description of how software should work. The Abstract Model represents a
compromise between the paradigms of the intended target implementation environments.

The Abstract Specification is organized into separate topic volumes in order to manage
the complexity of the subject matter and to assist parallel development of work items by
different Working Groups of the OGC Technical Committee. The topics are, in reality,
dependent upon one another⎯ each one begging to be written first. Each topic must be
read in the context of the entire Abstract Specification.

The topic volumes are not all written at the same level of detail. Some are mature, such
as those ISO documents that are used as part of the Abstract Specification. . The level of
maturity of a topic reflects the level of understanding and discussion occurring within the
OGC Technical Committee. Refer to the OGC Technical Committee Policies and
Procedures [2] document for more information on the OGC standards development
process.

Refer to Topic Volume 0: Abstract Specification Overview [3] for an introduction to all
of the topic volumes comprising the Abstract Specification and for editorial guidance,
rules and etiquette for authors (and readers) of OGC specifications.

1.2. Introduction to Features
From ISO 19101, “A feature is an abstraction of a real world phenomenon”; it is a
geographic feature if it is associated with a location relative to the Earth. Vector data
consists of geometric and topological primitives used, separately or in combination, to
construct objects that express the spatial characteristics of geographic features. Raster
data is based on the division of the extent covered into small units according to a
tessellation of the space and the assignment to each unit of an attribute value. Attributes
of (either contained in or associated to) a feature describe measurable or describable
properties about this entity. Unlike a data structure description, feature instances derive
their semantics and valid use or analysis from the corresponding real world entities’
meaning. Documenting feature instances, types, semantics and their properties is often
detailed in an information model.

1.3. Information Models
An information model details how to take real world ideas or objects and make them
useful to a computer system. In the geospatial world the focus is on depicting things in
the real world as points, lines, or polygons (the geometry ”primitives” we use to assemble
location data about those real world objects) and their attributes (information about those
objects). When linked together, a pair (geometry and attributes) representing one or more
real world objects, is called a feature.

In ISO 19101, there is the concept of the Domain reference model. The DRM provides a
high-level representation and description of the structure and content of geographic

The OpenGIS® Abstract Specification Page 1
Volume 5: Topic 5: Features

The OpenGIS® Abstract Specification Page 2
Volume 5: Topic 5: Features

information. For the purposes of this document, the information and domain reference
models are synonymous.

1.4. Terms and Definitions
The following terms and definitions used in this document are from various ISO
documents, including 19101 [4], 19111 [6] and 19107 [5]

• Coordinate: one of a sequence of N-numbers designating the position of a point in
N-dimensional space [6]

• Coordinate System: set of mathematical rules for specifying how coordinates are
to be assigned to points [6]

• Coordinate Reference System: coordinate system that is related to the real world
by a datum [6]

• epistemic - Of, relating to, or involving knowledge; cognitive. Adj. of or relating to
epistemology; "epistemic modal"

• Feature: abstraction of real world phenomena
• Feature Collection (see Record)
• geographic information: information concerning phenomena implicitly or explicitly

associated with a location relative to the Earth [4]
• Point: 0-dimensional geometric primitive, representing a position
• Record: finite, named collection of related items (objects or values) [5]

1.5. References for Section 1
[1] Cook, Steve, and John Daniels, Designing Objects Systems: Object-Oriented Modeling

with Syntropy, Prentice Hall, New York, 1994, 389 pp.
[2] Open Geospatial Consortium, 2008. OGC Technical Committee Policies and Procedures,

Wayland, Massachusetts. Available via the WWW as <
http://www.opengeospatial.org/ogc/policies >.

[3] Open Geospatial Consortium, 2005. Topic 0, Abstract Specification Overview, Wayland,
Massachusetts. Available via the WWW as <
http://www.opengeospatial.org/standards/as >.

[4] ISO 19101:2005 - Geographic information. Reference model
[5] ISO 19107:2003. Geographic information -- Spatial schema.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=2601
2

[6] ISO 19111: Spatial Referencing by Coordinates

http://www.opengeospatial.org/ogc/policies
http://www.opengeospatial.org/standards/as
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26012
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26012

2. The Essential Model for Features

2.1. General Notion of Geographic Information
Geospatial information is anything that you can learn by looking at maps -- not just
traditional maps, but new, creative, digital maps and earth visualization systems. A map,
after all, is simply a metaphor for the Earth itself. We therefore accept raster Earth
imagery as a kind of map, and even less structured collections of samples of Earth
phenomena with any kind of instrumentation as acceptable maps. For the purposes of this
document, we use the term “map” in a very broad sense – encompassing all earth
metaphors from traditional paper maps to 3d earth visualization systems.

We can learn about phenomena that vary with time by looking at special maps designed
to reveal temporal differences and events. However, the study of the temporal aspect of
geospatial information in 4-space is postponed for a later version of this document. For
now, we will assume that phenomena do not change, or that temporal aspects of
geospatial information can be held as attributes of features.

The fundamental unit of geospatial information is called a feature. Features may be
defined recursively, so there can be considerable variation in feature granularity. For
example, depending on the application or interests of the information gatherer, any of the
items in Figure 2-1 could be a feature.

 Potential Features
A segment of a road
between consecutive

intersections

A numbered highway
consisting of many

road segments

A georeferenced
satellite image

A single pixel from
the image mentioned

at the left

A temperature overlay
on a weather map

A triangulated
irregular network

A dynamically
segmented road

A drainage network

A set of siesmic event
magnitude contours

Figure 2-1: Example Features

The collection and use of geospatial information has one purpose: to communicate
knowledge about phenomena that have location. For example, the knowledge imparted
by the map answers two kinds of questions: "where" and "what." Maps can tell us where
things are, both in relation to other nearby things. Maps also can tell us what things are,
either through symbology (e.g., by use of color or line pattern whose meaning is
explained in a legend) or through text or tabular annotations or multi-media links. The
same goes for attributes that modify or extend our knowledge of things.

Digital geospatial information is geospatial information that has been encoded into a
digital form. The encoding is done so that computer resources can be applied to automate
the business of geospatial information processing: storage, transmission, analysis,
visualization and so forth.

There are many different ways to create digital representations of geospatial information.
This richness of alternatives is more a curse than a blessing since it has created the
confusing and apparently chaotic variety of Geographic Information System (GIS) data
structures and formats now confronting GIS users.

The OpenGIS® Abstract Specification Page 3
Volume 5: Topic 5: Features

This Abstract Specification exists to help bring order to this chaos and to provide the
foundation model upon which the OGC standards are based.

2.2. Introduction to the Notion of a Information Community
Typically, geographic features – such as “road” - are defined in the context of an
Information Community. Broadly speaking, an Information Community (IC) is a
collection of systems or individuals who share a common understanding of information
and processes for their specific domain. This implies that the members of the information
community share common understanding of their domain world, including definitions,
vocabularies, interests, mutual awareness, and common technology sufficiently that they
have the potential – and perhaps the capability - to share and use the information. For
example, a state Department of Transportation is an Information Community. Any given
DoT has a shared agreement on how they define any geographic feature within their IC,
such the definition and semantics for a feature type “road”.

Information sharing between two individuals not belonging to the same information
community is usually impeded by any of three conditions.

1. Ignorance of the existence of information outside one’s own information
community.

2. Modeling of phenomena not of mutual interest.

3. Modeling of phenomena in two representations different from each other such
that each is not recognized by the other.

The third condition is very, very typical in the geospatial community. Continuing our
example of roads, different Departments of Transportation (different information
communities) define and collect road features differently. The result is that a State
boundary, a road may have different names, different semantics, different accuracy
metadata and so forth.

The OGC provides a forum for enabling ICs to articulate and discuss their domain of
interest. This is critical. A key aspect of interoperability is for one or more information
communities to interact and drive to consensus for a common understanding (vocabulary
and semantics) for their information domain. These information models define feature
types and their properties. The goal to is define an information model for their
community. Technology is then deployed that uses the information model. For example,
in the US, each state DOT is essentially an independent information domain with their
own processes, policies, funding sources, etc. Even so, if we are to address broader
interoperability issues, such as cross state sharing of transportation data, the State DoTs
need to collaborate and define a common information model.

This document explores how an IC can formalize and unify its information-theoretic
foundations to ensure that information sharing within its community is straightforward.
As we will see, the process of formalization of information models for a community
actually benefits communication between widely separated ICs, because it exposes the
semantics of specialists within each community in a structured way.

Following we discuss several levels of abstraction implicit when modeling real-world
facts to create information models.

This section discusses the layers of abstraction between real-world facts and their
representation as a collection of Features with Geometry. Nine layers of abstraction are
identified, with eight interfaces between them. The layers of abstraction, their names, the
languages they use, their interfaces, and the methods that support navigation through the
interfaces are all identified in Figure 2-2.

The OpenGIS® Abstract Specification Page 4
Volume 5: Topic 5: Features

Figure 2-2: Nine Layers of Abstraction

We will discuss the nine layers one at a time. The first five layers, from the Real World to
the Project World, deal with the abstraction of real world facts, and are not modeled in
software. The final four layers, from Points to Feature Collections, deal with
mathematical and symbolic models of the world and are meant to be modeled in
software. Even so, this Essential Model of the final four layers assumes that they are real-
world objects, and gives no specification, however abstract, for their implementation. The
final layer is the abstraction of reality specified in the language an information – the
geometric and semantic description of a set of features or Feature Collection.

2.3. The Real World
By “The Real World” we mean the collection of all facts, whether they are known by
mankind or not. Facts in the real world are understood in terms of their essence. For
example, a tree is something that belongs to the category of things that have “treeness.”
Figure 2-3 is meant to represent the Real World. The cloud-like texture that occupies
most of the figure represents the wilderness of unknown facts that occupy the chaos of
the universe. Only a few of these facts are recognized as familiar patterns, and some of
these are represented in the drawing.

The OpenGIS® Abstract Specification Page 5
Volume 5: Topic 5: Features

Figure 2-3: The Real World

Figure 2-4 is an abstraction of Figure 2-3, using the Syntropy notation of [Cook94]. An
object type is represented by a rectangle, with a name at the top of the rectangle.

Real World

Figure 2-4: The Real World Object Type

Figure 2-4 is an essential model in the sense of [Cook94], that is, it is intended to help
understand a situation. The situation is the first step toward abstracting a part of the real
world into feature collections. Along the way, we will refine the concept of a Information
Community for geospatial feature collections.

Human discourse does not take place at the Real World level. Instead, humans give
names to things (abstract them) and communicate with each other using these names.
This naming process is exactly the method by which one interfaces to the next level of
abstraction: the name method. The names are the proper and common nouns and
pronouns of our natural language, and they are the language of the Conceptual World.

2.4. The Conceptual World
The conceptual world is the world of our natural language. We see and recognize the
things we can name, and this set of facts is often called the Universe of Discourse. In
Figure 2-5, which represents the Conceptual World, the clouds representing the chaos of
the universe are not present because this chaos is usually invisible in the context of our
natural language. Instead, the drawing shows things we can easily identify: doors, paths,
bricks, a roof, the house of a friend, and so forth. The method by which we interface back
to the Real World is the extraction of the essence of a fact. We call this the pith of the
fact. Because we give names to things that we know, and can sense the essence of these
same known things, we call the interface between the Real World and the Conceptual
World the Epistemic Interface.

The OpenGIS® Abstract Specification Page 6
Volume 5: Topic 5: Features

Figure 2-5: The Conceptual World

The Conceptual World of our natural language is not sufficiently abstract for information
modeling of geospatial features. In most Geospatial Technology Systems, only a
simplified subset of the Conceptual World is of interest. This subset is called the
Geospatial World. The method by which one interfaces to the Conceptual World is select.

Geospatial
 World

Real World Conceptual World
namepith embed

select
Figure 2-6: Associations between the Real World and the Geospatial World

In Figure 2-6 there are three object types, each represented by a rectangle, and each with
a name at the top. Lines between the rectangles represent associations between objects,
and each of these carries a role name at each end to explain the association. The diamond
represents aggregation; for example, the existence of the Conceptual World depends on
the existence of the Real World. The solid circle means there is a set (instead of a single
object) at that end of the association. For example, each Conceptual World embeds a set
of distinct Geospatial Worlds.

2.5. The Geospatial World
Practitioners of geospatial technology are used to thinking of the world in an abstraction
that is almost cartoon in character. This is because the world, even at the conceptual
level, is too full of complex shapes, patterns, details, and change to model realistically.
These complexities are eliminated in the Geospatial World, and replaced with
abstractions that are usually temporally and spatially static as well. Please note, however,
that an increasing number of applications are utilizing dynamic abstractions.

Our little slice of the universe is redrawn at the Geospatial World level in cartoon fashion
in Figure 2-7. Notice that some features have vanished and others have become greatly
simplified. For example, some windows, walls, and roofs of buildings have vanished.
This is because they are not of interest to the information communities geospatial view of
the world. They have become “invisible” to the community. Of course, there is no
universal definition of exactly what features are of interest to a given community, and
perhaps sometimes a roof may be of interest. The cartoon merely indicates that the
Geospatial World is a subset and a simplification of the Conceptual World.

The OpenGIS® Abstract Specification Page 7
Volume 5: Topic 5: Features

The language spoken in the Geospatial World is that of the “Geospatial Discipline.”

In our example, the footprints of the houses remain, even that part of the footprint that
was hidden behind another feature in a particular conceptual view. That is, from a typical
GIS point of view, the full footprint of a building is “seen”, even when some of it is not
in view. Each geospatial technology implementation has rules that specify what features
are recognized in its Geospatial World, and how they are simplified from the Conceptual
World. For example, there may be a rule that a brick house is simplified to a 3-
dimensional polyhedron, while a house with another surface material is simplified to its
footprint polygon. Similarly, facts that were not visible (but which were a part of the
conceptual model) in the Conceptual World view become obvious in the Geospatial
World, such as the street centerline and property boundaries, because these facts are of
special interest within the GIS discipline.

Figure 2-7: The Geospatial World

The interface between the Conceptual World and the Geospatial World is called the
Geospatial Discipline Interface. The method on this interface from the Conceptual World
is called select. To traverse this interface in from the Geospatial World to the Conceptual
World, one may invoke the method embed. The embed method places an item of domain
interest into its proper context in the conceptual world.

The features recognized within the Geospatial World usually have a native
dimensionality: 0, 1, 2, or 3, depending on whether they are seen as points, lines,
surfaces, or solids. They have additional metrics in terms of their binary topological
relationships (such as containment, adjacency, or distance apart.) The next level of
abstraction recognizes the native dimensionality and metrics of the features in a
Geospatial World, and is called the Dimensional World. The method by which the
metrics are acquired is called instrument. Note that instrument is performed in a

The OpenGIS® Abstract Specification Page 8
Volume 5: Topic 5: Features

Euclidean metric space that is assumed to exist (at least locally) throughout the
Geospatial World.

2.6. The Dimensional World
The Dimensional World is an abstraction of the Geospatial World where we become
equipped with measuring tools such as tape measure, theodolites, GPS, and/or compass.
The facts that are recognized at this level of abstraction include unary relations (such as
length of an arc, and bearing of a horizontal line) and binary relations (such as distance
between two points, buffer zone, and the “contains” relation) that are abstractions of the
features themselves. Other examples include North, overlap, touch, dimensionality,
intersect, and so forth.

abstraction localize Discipline I/F

D
is

ci
pl

in
e

 M

et
ric

 D
im

en
si

on
al

 W

or
ld

fitinstrumentabstraction Local Metric I/F

1600 sq. ft.

100 ft.

32
o Ea

st
of

 N
or

th

Ν

codify

0.16 acre

Figure 2-8: The Dimensional World

The method by which the Dimensional World interfaces to the Geospatial World is called
fit. A distance between two telephone poles is a fact that belongs to the Dimensional
World. A wire of this length fits the span between them as seen in the Geospatial World.
We include in Figure 2-8 some of the abstractions that are present in the Dimensional
World.

The Dimensional World is the last of the “generic geospatial” abstractions of the Real
World. The next abstraction is called a Domain World (some authors use the term
“World View” with a similar meaning) that occurs only in the context of an actual
domain implementation. Each implementation is specific to a particular discipline or sub-
discipline (or a combination of a few of them). In each actual implementation, only a
subset of the Dimensional World is recognized. Often, the subset is determined by map
neat lines and by the particular phenomena that have been instrumented.

In addition to the elimination of all but the features of specific interest to the particular
domain (discipline or disciplines), there is another abstraction at the Project World level:
we introduce the notion of a project-wide Coordinate Reference System (CRS). The most
common CRS establish a coordinate structure around the abstraction we call the Earth’s
surface, but there are other indirect reference methods, such as the use of a linear
reference technique to identify points with a single parameter (e.g., highway mileposts).
Whatever the method, we shall insist that all the coordinates that define the geometry of
the features abstracted into the Project World carry an abstraction that can be defined by
the Coordinate Reference System abide by the coordinate system framework. Hence,
coordinates are defined to be a collection of points sufficient for the geometric
construction of the geospatial extent of any feature of interest. For the purposes of this
document, he term “coordinate” is meant to be generic; it includes “poles” (for spline

The OpenGIS® Abstract Specification Page 9
Volume 5: Topic 5: Features

construction), “knots” (for NURB construction), “center” (for circle construction), and so
forth.

The interface between the Dimensional World and the Project World is called the
Community Interface. The method for invoking the Community Interface from a feature
in the Dimensional World is called codify, and results in a coordinate system being
invoked in terms of which all the features’ corners can be abstracted as an n-tuple (n is
usually 2 or 3) or into an equivalent abstraction. Conversely, a feature with known
coordinates in the Project World can invoke the localize interface to result in the feature’s
proper placement relative to other features in the Dimensional World, and with
appropriate measurements.

2.7. The Project World (or The “World View”)
2.7.1. Introduction to the Modeling of Geospatial Features

There are three popular approaches for the modeling of geospatial features.

The first models the spatial extent of a feature with point, lines, polygons, and other
geometric primitives that come from a list of well-known types. Features modeled in this
fashion are called “Features with Geometry.”

The second approach is called a “Feature as Coverage”. This technology includes images
as a special case.

The third approach is “Feature as Observation”. An Observation is an action with a result
which has a value describing some phenomenon. The observation is modelled as a
Feature within the context of the General Feature Model [ISO 19101, ISO 19109]. An
observation feature binds a result to a feature of interest, upon which the observation was
made. The observed property is a property of the feature of interest.

All these primary Features types are intimately related, yet have distinct concepts

This specification will complete the nine layers of abstraction for the case of Features
with Geometry. The notion of Coverages is introduced and compared to Features with
Geometry in Section 2.13.

2.7.2. Introduction to the Project World from the “Feature With Geometry” Point of View
The use requirements of geospatial content for an information community always reflect
the specific discipline or disciplines of their owners. Examples of geospatial disciplines
in which geospatial abstractions are frequently found include forest management, soil
mapping, cadastre management, base cartography, surface hydrology, wetlands,
transportation modeling, and so forth. Each of these disciplines has many sub-disciplines,
and an information community can involve any combination of these.

It is exactly the multiplicity of languages at the Project World level that leads to the most
difficult problems in interoperability between geospatial information stores. This is the
source of much of the splintering that artificially divides the Geospatial World. The
situation is manageable, however, if sufficient care is taken in the formalization of the
language constructs. We will see that each Geospatial Information Community is
intimately related to an equivalence class in the set of all possible Project Worlds under a
special relation.

Let’s look at three different Project World views of our slice of the universe. They are
shown in Figure 2-9. They reflect the views of a cartographer, a cadastre manager, and a
pavement manager, respectively. (A cadastre is a collection of parcel ownership and
parcel extent records.) Notice that each Geospatial Information Community sees an
abstraction of a particular subset of the whole Geospatial World.

The OpenGIS® Abstract Specification Page 10
Volume 5: Topic 5: Features

x

y u

v
abstraction

Pr
oj

ec
t W

or
ld

(W
or

ld
 V

ie
w

)

survey locate

localize Discipline I/F
Cartography

parcel

Cadastre

74 75
Pavement
Management

In
fo

rm
at

io
n

C
om

m
un

ity

Section 314

codify

abstraction Spatial Reference I/F

M
ai

n
St

.

Figure 2-9: The Project World, or The World View

Using the Syntropy notation, the associations from the Geospatial World to the Project
World are represented in Figure 2-10.

Geospatial
World

Project World
or World View

Dimensional
World

insturment

fit

codify

localize

Figure 2-10: Navigation between the Geospatial World and the Project World.

To give the next four levels of abstraction sufficient rigor for unambiguous representation
in software, we insist on imposing a great deal of structure upon the language of the
Project World (which we call the Information Community Language.) It is through these
structures that individuals certify that they are observing common phenomena, and have
abstracted the Real World in a repeatable way. Specifically, we impose nine formal and
rigorous structures: Feature Instances, Geometry, Coordinates, Geometry Schema,
Coordinate Reference System, Feature Types, Attribute-Value Pairs, Attribute Schema,
and Project Schema. All of these are to be understood as real world facts, not to be
modeled in software at this level of abstraction. We forbid all language that lies outside
these structures. Because all nine structures are essential for information sharing, we will
discuss each of them, one at a time.

2.7.3. Project World Feature Instances
The primary structure we impose on the Project World in that of the feature. The Project
World is completely defined by the instances of the phenomena it recognizes: features.
This specification is intended to enable the geospatial engineer to conceptualize and
model features in a manner appropriate to the task at hand, and does prejudice the
engineer with predefined thematic classes. This specification is standardizing geometric
classes, but does not assume that two engineers will apply them identically to model the
same information.

The next eight structures are, for the most part, substructures of the feature structure. We
insist that the notion of a feature be completely definitive in a Project World. We demand
that our conceptual model of the Project World explicitly recognize any hierarchical,
network, geometric, topological or other relationship between the phenomena recognized
as features, and hold them as features themselves or as attributes of features. Examples of
such relations are “is stacked on” and “is a part of.”

The OpenGIS® Abstract Specification Page 11
Volume 5: Topic 5: Features

The features of the Project World carry less, but more structured, information than was
held at the Geospatial World level, through the process of abstraction and simplification.
To make the Project World definitive, we demand that the rules for the inclusion of
features from the Geospatial World into the Project World be explicit. Such rules are
often called “capture criteria,” or “instance conditions.” Each instance of a feature in the
Project World fits a category in the capture criteria.

2.7.4. Project World Feature Types
The categories of features captured in a Project World are feature types. Each feature
type can be thought of as a “template” to be populated at each occasion of a feature
instance corresponding to that type. The template is populated with information specific
to the feature instance. More details are at Section 2.7.8.

2.7.5. Project World Geometry
The feature of the Project World is a simplification and abstraction of the cartoon
information carried in the Geospatial World. We recommend that features with spatial
extent in the Project World be conceptualized using simple primitive geometric shapes.
For interoperability, we recommend that the primitive shapes be instances of the Well-
Known-Types (WKTs) of geometry, such as polygons, line strings, polyhedrons, and
other shapes. The current enumeration of geometry types can be found in the OGC
Abstract Specification Topic Volume 5 (also ISO 19107 – Features). We call instances of
WKTs Well-Known-Structures (WKSs). We further demand that rules for representing
each feature type with WKTs is explicit (for example, a rule may specify that a brick
house is seen as a polyhedron.) Finally, we demand that the conceptual model of the
WKSs carries sufficient information to enable the reconstruction of the extents of the
features to which they contribute. That is, we insist that the geometry components
“know” how they contribute to complex geometries (for example, the highway segment
geometries must know the sequence in which they concatenate to become an entire
highway feature.

2.7.6. Project World Envelope
The primitive spatial concept in a Project World, from which all phenomena with spatial
extent are spatially conceptualized, is “envelope”. An envelope is a geometric primitive
that (directly or indirectly through a geometric construct, such as a spline) defines (in
whole or in part) the spatial extent of one or more of the phenomena recognized within
the Project World.

Each OGC WKS can be constructed from a finite set of points that are its corners. We
strongly recommend that the corners of an envelope be explicit in the Project World. We
further demand that the model for the envelope carries sufficient information to allow for
the construction of the WKSs. For example, we recommend that the sequencing of
envelope along a polyline is explicitly available within the Project World.

2.7.7. Project World Geometry Schema
The collection of rules implicit in sections 2.7.5 and 2.7.6 are called the geometry schema
of the Project World. Examples include:

• for each feature type, the geometry WKTs that are to be used in its representation

• for each WKS, the feature instances to which it contributes

• for each feature instance, the WKSs that contribute to its extent

• for each WKS, the structured list of corners which specify it

• for each corner of an envelope, the WKSs to which it contributes

2.7.8. Coordinate reference System

The OpenGIS® Abstract Specification Page 12
Volume 5: Topic 5: Features

We introduced the notion of a Coordinate reference System at the end of Section 2.6.
Here, as there, we are treating a Coordinate reference System as a real world fact. A good
example is a well-monumented point-of-beginning used by a surveyor. The point-of-
beginning, together with the tools and rules for surveying, enable one to attach
coordinates to every point of interest in a project. The points of interest are precisely the
coordinates needed for the geometric construction of the geospatial extent of any feature
recognized by the project.

Because the introduction of a Coordinate reference System is central to the notion of a
project world, the methods for traversing the Community Interface between the
Dimensional World and the Project World are named for the actions relating to it.
Invoking the method codify causes points in the Dimensional World to obtain their
Coordinate reference System coordinates or parameters. Invoking the method localize
removes the coordinates and recovers points in correct relative positions.

A detailed model for Spatial Referencing by Coordinates can be found in ISO 19111,
OGC Abstract Specification Topic Volume 2.

2.7.9. Project World Attribute-Value Pairs
Section 2.7.3 began by insisting that the Project World recognize only features. This
section puts additional structure on the concept of feature. We are going to replace our
rich and complex natural language descriptions of features with an abstracted stick-figure
language of attribute-value pairs.

So far, each Project World feature is associated with two structures: the feature type of
which it is an instance, and the geometry consisting of an OGC WKS. The geometry is
expressed relative to a Coordinate Reference Systems, and includes all coordinates
needed for its construction. We now additionally insist that each feature instance be
described using a strict grammar and vocabulary. The purpose of the grammar and
vocabulary is to unambiguously and in a repeatable manner describe the attributes of
interest for each feature within the Project World.

In the Project World, each feature type is associated with a list of attributes. Our grammar
demands that each attribute in the list have a formal attribute name, and that each
attribute take a value of a type specific for that attribute. A sample grammar for feature
types is shown by the sample template in Figure 2-11.

The OpenGIS® Abstract Specification Page 13
Volume 5: Topic 5: Features

Figure 2-11: Template for [AttributeName /Value Type] Pairs for Feature Type: RoadSegment

Our vocabulary, therefore, is quite limited. We are allowed only the following terms:

1. the names of the feature types recognized by the Project World

2. attribute names

3. attribute values.

Of course, each of these terms can be used only where our grammar permits.

Every feature may publish a unique, persistent. Most feature types have an attribute that
can take geometry values. This is the attribute whose value is the WKS that models the
physical extent of a feature instance of this type. Relationships between features may not
be carried as an attribute-value pair, but must use the facilities described in Topic 8:
Relationships Between Features.

2.7.10. Project World Attribute Schema and Feature Schema
The collection of all feature types recognized by a Project World (including the capture
criterion for that feature type) together with the list of Attribute/ValueType pairs for each
one, is the attribute schema of that Project World.

x

y u

v
abstraction

Pr
oj

ec
t W

or
ld

(W
or

ld
 V

ie
w

)

survey locate

localize Discipline I/F
Cartography

parcel

Cadastre

74 75
Pavement
Management

In
fo

rm
at

io
n

C
om

m
un

ity

Section 314

Codify

abstraction Spatial Reference I/F

M
ai

n
St

.

geometry
schema

attribute
schema

geometry
schema

attribute
schema

geometry
schema

attribute
schema

Figure 2-12: Another look at the Project World

The attribute and geometry schemas constitute the feature schema of the Project World.
See Figure 2-12.

Figure 2-12 is a refinement of Figure 2-9. It explicitly includes the feature schema as a
part of the Project World.

The table of attribute-value pairs in a Project World, and more importantly, the semantics
behind its terms, reflects the interests of the scientists who conceptualize and formalize it.
We insist that the schema be extremely formal, so that all the individuals participating in
a Project World observe the same phenomena, and record them in exactly the same way.
This rigor mandates that the attribute schema must be completely specific about the

The OpenGIS® Abstract Specification Page 14
Volume 5: Topic 5: Features

names and meanings of its attributes, as well as the meaning (to include types and units)
of its values.

This implies the existence of a dictionary in each Project World where the semantics of
the terms in the vocabulary are made clear. The semantics are usually explained in a
natural language, with many examples, and have many more dimensions than indicated in
this paper. The semantics include aspects of: feature definition, classification
discriminators, accuracy, sources, methods, intended uses, and so forth.

2.7.11. Project Schema
The OGC is, to a large extent, about enabling commerce in geospatial information and
process. We make the basic assumption that an important unit of trade in this commerce
is a feature collection. Each distinct and unique feature collection, therefore, needs to
carry enough meta-information to allow the feature information it carries to be
understood and exploited. We hinted at some of this meta-information when we spoke of
a dictionary for the Project World vocabulary, but there is more. The Project Schema is
the formalization of this meta-information, and it is best defined in the Project World
context. Figure 2-13 shows the relationships between a feature collection, its features,
and the meta-information needed for commerce. The shaded object types denote
information that supports the modeling of feature instances within the feature collection.
The white object types all hold meta-information of some kind. The white objects,
collectively, are termed metadata. We have already introduced the Feature Schema; it is
simply the union of the Geometry Schema (See Section 2.7.7) and the Attribute Schema
(See Section 2.7.10).

Figure 2-13: The Role of the Project Schema in a Feature Collection

The OpenGIS® Abstract Specification Page 15
Volume 5: Topic 5: Features

The Project Schema consists of four parts:

1. Feature Collection Identification

2. Lexical Semantics

3. Project Semantics

4. Use Semantics.

We will briefly explain each of these objects, below.

The Feature Collection Identification is a simplified selection from the Project Semantics
that is designed to be queryable. For now, it suffices to say that this object provides a
unique identifier to the Feature Collection, and provides a high-level description of it:

Where: the region of the Earth covered

What: the approximate scale, the thematic key words

Who: the responsible agent, instructions for access to the Feature Collection

When: the date the data was created and the date of its sources

How: the method to acquire the feature data

Why: the intended use

We will see that the Feature Collection Identification (metadata) is used to support
discovery. Since the Feature Collection Identification often plays a role that makes it
seem to be intimately connected to the Feature Collection itself, we show a derived
relationship between these two object types.

Lexical Semantics are basically the dictionary of terms used in the attribute schema. The
Lexical Semantics must provide sufficiently rich definitions and enough examples that
there be no ambiguity concerning the proper schema for each feature instance.

Project Semantics describe how the Project World was conceptualized, and how the
Feature Collection was generated. Included here is the physical extent of the project, such
as the map neatlines, or the region imaged from a space platform.

Use Semantics provide details on how to exploit the feature collection. Included are the
intended uses for the information as it was collected, any indices that improve access to
the information,

Figure 2-14 is a last look at our slice of the universe in conceptual and literal terms.
Further abstractions will be symbolic and mathematical representations.

The OpenGIS® Abstract Specification Page 16
Volume 5: Topic 5: Features

Figure 2-14: A Final Look at the Project World and Its Fundamental Schema

We now have the tools with which to define a Geospatial Information Community. But
first let us complete the process of abstracting to features and feature collections.

2.8. The Point World
Each Project World has a project-wide coordinate reference system. With the coordinate
reference system, we are able to interface to the next level of abstraction: the Point
World. The Point World is perhaps best imagined as Cartesian space populated with a
finite collection of special points. Starting from any coordinate of any feature in the
Project World, we assume a method named survey that abstracts the coordinates of the
corner to arrive at a special point in the Point World. Conversely, for each special point in
the Point World we assume a method named locate that locates that point as a coordinate
of a feature in the Project World. Of course, the survey and locate methods work for
points other than the feature coordinates, but to recognize these additional points, one
must enlarge the schema and allow new phenomena to be recognized.

survey locate

x

y u

v

abstraction

O
pe

nG
IS

 P
oi

nt
 W

or
ld

Section 314

C
oo

rd
in

at
e

G
eo

m
et

ry

Spatial Reference I/F
φ=45

ο

(x1,y1)

(φ1,λ1,h1)

(u1,v1)

abstraction decompose Structure Interfaceassemble

The OpenGIS® Abstract Specification Page 17
Volume 5: Topic 5: Features

Figure 2-15: Point World

Figure 2-15 represents the situation. There are three Point Worlds represented: one each
for cartography, cadastre, and pavement management. Each Point World consists of a
coordinate reference system together with a finite set of points (which are at the
coordinates of geometries representing features of interest to those three specialties.)

P o i n t
W o r l d

P r o j e c t W o r l d
o r W o r l d V i e w

s u r v e y
l o c a t e

C o o r d i n a t e R e f e r e n c e
S y s t e m

H o r i z o n t a l D a t u m
V e r t i c a l D a t u m

Figure 2-16: The Abstraction of Points from the Project World

Using the notation of [Cook94], the situation is represented in Figure 2-16, where an
attribute of an association is shown attached to the association line with an oval. The
association of a coordinate in the Project World to a coordinate pair (or n-tuple) in the
Point World has an attribute called the Coordinate Reference System. Perhaps more
properly, there is an association type that specifies the structure of the association with
additional information, including the horizontal and vertical datums. (A horizontal datum,
in this setting, may be taken to be an unambiguous assignment of longitude and latitude
values to real world locations in a manner that agrees with observations of lengths and
angles. A vertical datum similarly assigns elevations to locations.)

2.9. The Geometry World
The careful reader noticed that Figure 2-15 contained more than isolated points and
coordinate axes. There are also dotted lines that carry the “memory” of how the points are
assigned to specific coordinates of more complex geometry, and combine to recover the
geometry components from which the features are to be modeled. The dotted lines did
not actually belong in Figure 2-15, because they are not a part of the Point World.

The function of the OGC Geometry World is to recover from earlier abstractions the
information needed to construct the OGC Geometry WKTs that model the Project World.

The OpenGIS® Abstract Specification Page 18
Volume 5: Topic 5: Features

Figure 2-17: The OGC Geometry World

Figure 2-17 shows some representations of the Geometry World, which is populated with
points, polygons, polyhedra, and so forth, all in the context of an abstract coordinate
system.

The role of the geometry schema is shown more explicitly in Figure 2-18. Here we see
that the association between the Point World and the Geometry World is actually a
derived association (as indicated by the diagonal line on the association line.) The
navigation path from Points to Geometries is through the geometry schema captured in
the Project World abstraction.

Figure 2-18: Navigation From Points to Geometry

The Geometry Schema Interface lies between the Project World and the Geometry
World. To traverse the interface from the Project world, one invokes the skeletonize
method to create the OGC WKS equivalent to any recognized geometry in the Project
World. Traversing the interface in the reverse direction is invoked by the enclose method,
whereby an OGC WKS is replaced with the cartoon outline of the actual phenomenon
represented by that WKS. The interface between the Point World and the OGC Geometry
World is invoked by the decompose and assemble methods, which are defined by the
paths through the Project World.

The OpenGIS® Abstract Specification Page 19
Volume 5: Topic 5: Features

We also show a derived association between the Coordinate Reference System and the
Geometry Schema. This is to indicate that the Coordinate Reference System often seems
to behave as if it operates on complete geometries, and not just on coordinates.

In Figure 2-18 we used the geometry schema to build the Geometry. Next, we will use
the attribute schema to build Features.

2.10. The Feature World
At the level of an Essential Model, each Feature type is specified by its attribute set. An
attribute set is a list of attribute/value pairs that is applied to all features of the
corresponding type. Every feature instance in the Project World belongs to the one of the
recognized types. The type specifies the list of attributes that distinguish the feature, as
specified by the Attribute Schema. Most geospatial features have an attribute called
“Geometry,” (or, “[FeatureTypeName]Geometry”) and, if so, its value must be the OGC
WKS that was conceptualized in the Geometry Schema. Figure 2-19 is a representation of
the situation.

geovalueabstraction Feature Interface

O
G

IS
 F

ea
tu

re
 W

or
ld

Property Value
Name House
Geometry (wkt)…
Attribute …
... ...

O
G

IS
 F

ea
tu

re
s

x

y

Property Value
Parcel# 74
Geometry (wkt)…
Attribute …
… ...

u

v

Property Value
Section# 314
Geometry (wkt)…
Attribute …
… ...

extent

λ

φ

Figure 2-19: The Feature View

Figure 2-19 shows a typical feature in each of the cartographic, cadastre, and pavement
management domains. These features did not suddenly come to exist for the first time in
the Feature World. The features are the same ones formulated in the Project World. There
are two chief components to an feature: its attribute schema, and its geometry. Figure
2-20 shows how the two components of the feature come together.

OGIS Feature
World

geo-value

extent

attribute

instance

Attribute
 Schema

Attribute
 Reference System

Attribute

OGIS Geometry
World

extent

Project World
or World View

The OpenGIS® Abstract Specification Page 20
Volume 5: Topic 5: Features

Figure 2-20: Navigation Near a Feature

Notice that the association between Geometry and Feature has no slanted line on it. This
is in recognition that this is not a derived association, but rather the primary navigation
path for geometry. The path from the Project World to the Feature does not carry
geometry, but it does carry all the rest of the Feature Schema.

The interface between the Geometry World and the Feature World is the Feature
Structure Interface. It is traversed by the extent and geometry-value (or geo-value, for
short) methods. These methods are clear: the extent of a feature is the space it occupies,
and this is modeled by an OGC WKS. Likewise, every feature with extent has an
attribute named geometry, whose value (that is, the geo-value) comes from the Geometry
World.

The interface between the Project World and the Feature World is called the Attribute
Schema Interface. It is traversed by transparent methods named attribute and instance.

There are two new object types in Figure 2-20: Attribute and Attribute Reference System.
By “Attribute” we mean a (AttributeName, ValueType) pair, as defined in Section 2.7.9,
and as spelled out in the Attribute Schema. The Attribute Reference System is
(sometimes) needed to give meaning to the attribute value. For example, a feature may
be a temperature coverage defined by a triangulated irregular network (TIN) from a finite
number of temperature samples. The mechanics of returning a temperature at a specified
point (a coordinate perhaps not in the finite set of coordinates with temperatures) is
accomplished by the Attribute Reference System.

Refer also to Appendix B. The ISO TC211 General Feature Model for a similar
representation of features, their attributes, functions and relationships.

2.10.1. Feature Collections
An Feature Collection is an abstract object consisting of Feature Instances, their Feature
Schema, and Project Schema. Figure 2-21 shows Feature Collections in a Syntropy
diagram.

OGIS Feature
World

OGIS Geometry
World

Project World
or World View

geo-value

extent

skeletonize

enclose

attribute

instance

Attribute
 Schema

Geometry
Schema

OGIS Feature
 Collection World

realize

represent

Project
 Schema

include

member

Figure 2-21 Navigation Near the Feature Collection World

Feature Schema are the key to Feature Collections.

The OpenGIS® Abstract Specification Page 21
Volume 5: Topic 5: Features

Figure 2-21 can be simplified by collapsing the Geometry Schema and the Attribute
Schema into the Feature Schema. Doing this yields Figure 2-22.

OGIS Features
World

Project World
or World View attribute

instance

Feature
Schema

OGIS Feature
 Collection Worldrealize represent

Project
 Schema

include

member

Figure 2-22 Feature Collections Consist of Features, their Feature Schema, and a Project Schema

2.10.2. Interfaces on Feature Collections
The interface between the Feature Collection World and the Feature World is called the
Project Structure Interface. This interface is transparent, but it is derived from paths
through the Project World. This is because the members of the Feature Collection World
correspond directly to phenomenon in the Project World, not to a feature in the Feature
World. Nevertheless, the methods across the Project Structure Interface, called member
and include, are obvious.

The interface between the Feature Collection World and the Project World is called the
Project Schema Interface. Its methods are also obvious, and are called realize and
represent.

2.10.3. Background Notes on Feature Collections
The Open GIS Consortium has not yet achieved consensus on many issues surrounding
Feature Collections. On the one hand, perhaps Feature Collections are not needed at all.
This is because:

• a feature can be a composite of other features, connected by relationships of a
particular type (see Topic 8)

• a “tile” may be a feature composed of (related to) the features it contains

• a feature may have one of its geometry values “divided” by tile boundaries, and thus
be split into one feature with two geometry values or two features each with part of
the geometry, yet need to be “reassembled” on demand by an interface on Feature or
by a service.

On the other hand, the real world seems full of Feature Collections that need to be
addressed. These include:

• projects, which have assignment boundaries and feature capture criteria and
thresholds

• products from Government agencies, such as VPF, ADRG, SDTS, ATKIS, and
similar files

• GIS database files

• the persistent or non-persistent ad hoc collection of features present at any moment
in a GIS workspace.

The OpenGIS® Abstract Specification Page 22
Volume 5: Topic 5: Features

Feature Collections seem to need important interfaces in order to support the needs of
Catalogs and Catalog Services. These interfaces seem to be tightly coupled with Feature
Collection Metadata. Formal definition of feature identifier scope is required, and every
scope implicitly has an association with the collection of features whose identifiers it can
resolve.

2.11. Summary of the Nine Layer Model
As a summary of the preceding sections, and as a reformulation of Figure 2-2, we present
Figure 2-23.

name pith

select embed

measure fit

codify

localize

survey

locate

assemble

extent geo-value

Epistemic
Interface

GIS
Discipline
Interface

Local
Metric
Interface

Community
Interface

Spatial Reference
Interface

Geometric
Structure
Interface

Feature
Structure
Interface

Project
Structure
Interfacemember include

decompose

Real World;

Essential
Language

Conceptual
World;
Natural

Language

OGIS Points;

Coordinate
Geometry

OGIS
Geometry

World;
OGIS WKTs

OGIS
Feature World;

OGIS
Features

Project World
(World View);

Information
Community

Dimensional
World;
Metric

Language

Geospatial
 World;

GIS Language

Mathematical
and Symbolic
Models of
the World

Conceptual
and Literal
Models of
the World

encloseinstance

attribute

Attribute
 Schema
 Interface

Geometry
 Schema
 Interface

Project
 Schema
 Interface

represent

realize

skeleton

OGIS Feature
Collection World
OGIS Feature

Collection

Figure 2-23 Nine Layers of Abstraction with Additional Interfaces

The OpenGIS® Abstract Specification Page 23
Volume 5: Topic 5: Features

Using the notation of [1], we present Figure 2-23.

GIS WorldReal World

OGIS Feature
World

OGIS Geometry
World

OGIS Point
World

Project World
or World View

Dimensional WorldConceptual World
namepith

model

embed

measure

fit

codify
localize

survey

locate

assemble

geo-value

decompose

extent
skeletonize

enclose

attribute

instance

Attribute
 Schema

Spatial Reference
System

Geometry
Schema

OGIS Feature
 Collection World

realize

represent

Project
 Schema

include

member

Attribute
 Reference System

Attribute

Figure 2-24 The Object Types of the Nine Layer Model

2.12. An Alternative Perspective to the Nine Layer Model
Figure 2-25 presents an alternative view of the various ways of defining multiple worlds,
but from a language perspective. This view is equally valid but different. In particular,
the nine-layer model implies that the essence of all features is tied up in their spatial
extents (they are all drawn from a ‘Project World’ which is a ‘codification’ of the
‘Dimensional World’). However, we define features to be able to have many spatial
extents - or none - and where the spatial extent of the feature may be of less importance
than its relationships to other features (see Topic 8).

The OpenGIS® Abstract Specification Page 24
Volume 5: Topic 5: Features

Figure 2-25 Conceptual Model of the ‘Real World’ modelling process

2.13. Persistent Feature Identifiers
2.13.1. Problem Statement

Managers of complex geographic information systems require capabilities for
incremental update, distributed update, copying and partially modifying data. These
capabilities require a more careful examination of the issue of feature identity than has
previously been achieved.

Identity has implementation, logical, syntactic and philosophical aspects. A complete
analysis is not attempted here.

Some handling of feature identifiers is necessary in order to represent relationships
between features. This is discussed in Topic 8 of the Abstract Specification

A troublesome issue in the community is the lack of ability to support value-added
information in a cost-effective manner [Hair97]. Value added information is an extension
of a primary database which needs persistent feature identifiers in order to allow:

• additional information to a base dataset is required for a one-off or transient
application

• a base of information exists but there is a long term need for additional information
that has not been captured in the past

formation
that has not been captured in the past

• partnerships are established based on areas of expertise but sharing some common
data, e.g. between telecommunications and electricity utility companies

• partnerships are established based on areas of expertise but sharing some common
data, e.g. between telecommunications and electricity utility companies

• incremental updating and incremental publishing • incremental updating and incremental publishing

• maintenance of complex or aggregate objects (currently using relationships, see
Topic 8).

• maintenance of complex or aggregate objects (currently using relationships, see
Topic 8).

Natural Language (e.g. English)

Human Experience

Formal Languages (Mathematics, Logic, Specification
L)

Inter-domain (Service) Languages

Geometric Language
Metric Language

Geo-Referencing Language
Topologic Language

etc.

Domain-
specific

Languages

generalization specialization

C
on

ce
pt

ua
l

W
or

ld

R
ea

l W
or

ld

The OpenGIS® Abstract Specification Page 25
Volume 5: Topic 5: Features

• Reference to a geographic feature within a repository from outside the repository and
perhaps outside any computing system, e.g. as a string of text in a hand-written
letter.

We also need persistent, immutable feature identifiers in order to support:

• Tracking of feature identity during updates and collaborative working

• Proper management of versions

• Lineages of data transformations

The differences between geographic feature identifiers and many other types of persistent
identifiers are of scope and scale. A single geospatial data repository may contain
hundreds of millions of features. CORBA Persistent Object Identifiers are intended to
identify executing software objects in much smaller numbers. Similarly, the IETF
Unified Resource Names are designed for smaller numbers of objects. However, the
design of IETF URNs may be appropriate for geographic features even if current
implementations of identifier resolvers may not be [URNDNS].

2.14. Resolving Scoped Feature Identifiers
2.14.1. Fundamental Ideas

Every feature has one feature identifier (name) within its immediate scope (namespace).

A feature identifier is persistent and immutable.

A namespace, a "Scope", in which an identifier can be resolved, is itself a software object
and does itself require a permanent identifier.

Scopes can be nested, but do not form a strict tree: a directed acyclic graph (DAG) is
possible.

At the "bottom" are the leaf-objects, which are explicit identifiers which do not then need
resolving in any other scope.

At the "top" we need to have some "Well Known Scopes" written into the
implementation specification.

Leaf objects can be feature identifiers, scope identifiers, or any other type of identifier.
We just deal with feature and scope identifiers here. Note that we only deal with
identifiers.

Using a fully-resolved "bottom" leaf feature identifier to actually retrieve a feature's data
is access not resolution and is a different issue.

2.14.2. Key concept
Scope is a permanent object with a persistent, immutable name that allows it to be located
indefinitely, which can answer queries about identifiers "in its scope": resolving them to
more explicit identifiers.

Finding a "scope object" is thus necessary. CORBA POAs and IETF URNs would be
appropriate for the identifiers of scope objects.

2.14.3. Key supporting concept
Any scoped identifier (simply called an "identifier" or "name") is conceptually and
perhaps actually constructed in two parts:

• A suffix, which may be opaque or may be an identifier in some grammar.

The OpenGIS® Abstract Specification Page 26
Volume 5: Topic 5: Features

• A prefix, which defines the scope in which the suffix has meaning.

There is also always a third, invisible, part: the scope in which the whole thing, prefix
and suffix, should be interpreted. This is because an identifier is always "inside" a scope.

2.14.4. Principles
Longevity, delegation and independence [URNres].
Identifiers must be persistent (last a long time)
It must be possible to delegate both authority and responsibility for both naming and

resolution
The various delegations must be capable of being independent of one another
There are three aspects to naming: identification, location and mnemonics (semantics)

[URIres].
The resolution system must be separate from the way identifiers are assigned

[URNDNS]. This separation allows multiple naming approaches and resolution
approaches to interact and to compete.

These identifiers are generally distinct from Human Readable Names (HRNs). However,
a Scope can be defined in which identifiers are Human Readable, and then HRNs can
be resolved in the same way as any other scoped identifier.

We need to be able to "grandfather in" existing naming schemes and Scopes [URNDNS].
Resolver services must be able to support scaling in three dimensions: number of

features, number of data publishers, and complexity of delegation [URIres]
"One cannot make global, systemic guarantees except at an expense beyond reason."

[URIres].

Scoped Identifier

Resolution request

Identifier

Enclosing scope

Sub-scope

Resolution result

Figure 2-26. Resolution of a scoped identifier in a scope yielding an identifier inside an enclosed
scope.

The OpenGIS® Abstract Specification Page 27
Volume 5: Topic 5: Features

2.14.5. Resolver Services
Resolvers and similar systems can offer several services. The following list is taken from
IETF work which use the term "name" for "identifier", "namespace" for "scope", and
"characteristics" for "metadata" [URNDNS]:

N2L Given a name (identifier), return a location (URL)

N2Ls Given a name (identifier), return a set of locations
(URLs)

N2R Given a name (identifier), return the feature
("resource") itself

N2Rs Given a name (identifier), return multiple instances
of the feature ("resource")

N2C Given a name (identifier), return its characteristics
(metadata), e.g. a URC. Characteristics are always
potentially a list (plural).

N2Ns Given a name (identifier), return all the names that
are identifiers for that feature

N=N? Are these two names identifying the same feature?

L2R Given a location (URL), return the feature
("resource")

L2Ns Given a location (URL), return the names that
identify that location

L2Ls Given a location (URL), return a list of locations
that contain the same feature

L2C Given a location (URL), return its characteristics
(metadata), e.g. a URC.

L=L? Are these two locations the same?

R=R? Are these two features the same? (Assuming they
have different names)

Figure 2-27 Resolver Services

Notes for Figure 2-27:

• Using the above naming convention, "C2N" would be a metadata query, not a
resolver query.

• N2C, even at the "lowest" level scope, is often all that can be achieved if the
"resource" is off-line or in hard-copy form only.

• For the purposes of feature identification, we need all scoped identifier resolvers to
offer only the following service: the critical service N2Ns (which we expect usually
to return a single new name in a "lower" scope).

• For the purposes of feature identification, we need the "lowest" scoped identifier
resolvers to offer only the following services: N2R, or N2Rs, and/or N2C as
appropriate.

• This list is not exhaustive and many more services can be envisaged. Rather than
freeze the set of services as function calls in a standard Interface, it would be

The OpenGIS® Abstract Specification Page 28
Volume 5: Topic 5: Features

preferable to set up an architecture whereby new services could be registered,
discovered and advertised. This is the approach which will eventually be followed by
IETF [URIres], but at present such an approach would be premature.

2.14.6. Further Example
"The Handle System®" from CNRI is an example of a 1-level scope system. An
identifier looks like this:

hdl://cnri.test/abcd/efg/ijk#123

Where:

• the suffix is: abcd/efg/ijk#123

• the prefix is: hdl://cnri-test/

• and the scope in which it makes sense as an identifier is The Handle System® which
exists in within the Internet.

The Handle System includes a large number of scopes, but all of them have “hdl://”as
the first part of their prefix.

2.14.7. Hints
The above example illustrates another useful but non-essential characteristic: the invisible
scope in which the identifier should be resolved is indicated in a non-formal way, a "hint"
URNres] by the initial part of the text string of the prefix. Any informed person reading
“hdl://” has a pretty good idea that we are dealing with a variety of URL (a URI to be
pedantic [URI]) and we need to find which protocol “hdl:” represents. This capability
is most use at the "top" level when we have to decide which Well Known Scope we have
to start with. Lower scopes could be pure binary for prefixes and suffixes.

Hints are much more general facility than simply being an interpretation on prefixes; they
are "anything that helps in the resolution of an identifier" [URNres]. Hints may
themselves have metadata attached to them and may be an intermediate step in the
resolution of an identifier. However they are also only hints: they may be out of date,
temporarily invalid etc.

2.14.8. Well Known Scopes and URNs
A Well Known Scope is a Scope Environment, e.g. X.500, Corba Locator Service, DNS
(machine identifiers), URL (file identifiers if the location is permanent).

Other Scope Environments might be:

• a FeatureCollection

• a database

• a computer

• a geodata repository service

• a website

• URNs

These can be self-referential and mutually referential. Within any scope environment
there will be many resolvers. Each environment will need to have the services of a
Resolver Discovery Service (RDS) - but the RDS for one environment does not itself
have to be hosted in that environment, e.g. an RDS for X.500 resolvers could run in the
WWW environment.

The OpenGIS® Abstract Specification Page 29
Volume 5: Topic 5: Features

2.14.9. Uniform Resource Names
A URN always has the following syntax:

urn:<NID>:<NSS>

(i.e., urn:<namespace>:<suffixname-which-can-contain-colons>)

The standard names are NID and NSS: NID is the namespace identifier (scope identifier)
and NSS is the namespace-specific string [URNres].

Thus the "invisible", third, enclosing scope for a URN is always visible because all URNs
begin with the same literal string "urn:"

NSSs are expected to be partitioned into delegated and subdelegated namespaces where
the delegated namespaces are free to choose their own syntax for the variable part of the
namespace [URNres].

URNs can have access controls applied to their resolution.

If a scoped identifier is a Uniform Resource Name or URN [URN], there is a proposed
mechanism already whereby resolvers for those names can be located using DNS
[URNDNS] and HTTP [URNhttp]

The "hint" to find a resolver can be encoded in a rewrite rule inside Domain Name
Servers [URNDNS]. Replicated repositories and resolvers can be supported by this
means.

URNs are a specific design of scopes which can be arranged in nested scopes in a
directed acyclic graph.

URNs need not include the more-resolved scoped identifiers lexically in the successive
suffix parts (opaque or not), and they can support rewrite rules which enable automatic
grammar-directed mapping between names (identifiers) in one namespace (scope) and
another namespace.

Every resolution of an identifier (name) occurs in URN resolvers, possibly even in the
same resolver software running on the same machine, but the path of resolution can trace
out a directed .acyclic graph.

URNs already have had preliminary studies made on their security and privacy
[URNres].

2.14.10. What resolution does
An identifier is resolved by giving it to the Scope object in which it is defined (the
invisible one), which (conceptually) strips off the prefix, finds the Scope object that the
prefix names, and hands the suffix to that Scope object. When the process reaches a leaf
identifier, the stack unwinds and the leaf identifier is returned together with whatever
information is necessary for the original enquirer to make use of it. This is a sequence on
N2N operations.

2.14.11. Resolution, discovery and access
For software specification it is best to keep orthogonal functions specified entirely
separately as distinct interfaces. Any implementation may choose to support one or
several interfaces. We have three quite separate specifications to think about:

• Issuing or assigning scoped identifiers

• Resolving scoped identifiers N2N

• Discovering objects that match certain properties (catalog query using metadata)
C2N

The OpenGIS® Abstract Specification Page 30
Volume 5: Topic 5: Features

• Accessing data (data repository query), N2R

Experience with these types of systems has produced a major principle: that the
resolution system must be separate from the way identifiers are assigned [URNDNS].

2.14.12. Handles and descriptors
We understand a feature descriptor to be something which is resolved by a Catalog
Service. A feature descriptor contains "sufficiently unique metadata".

This discussion of scoped identifiers covers what we previously called a feature handle.

2.14.13. Permanent scope objects
Anything could offer an identifier resolution service within an "understood" scope, but
we need to ensure that scoped-identifiers are only issued containing scope object prefixes
for scope objects with certain minimum required qualities of permanence and
immutability.

Catalog services are something which we could also cover by this same scoped identifier
mechanism.

2.14.14. Uniqueness of identifiers

2.14.14.1. The same feature can be in several Scopes
There does not seem to be any way to avoid this since anyone can set up an identifier
resolution service which then defines its own new scope.

Thus the same feature (a specific software representation of a real world object) can have
several scoped identifiers. It will have the same leaf identifier (in the immediate scope of
the feature), but this could appear in published form hidden inside several different
scoped identifiers via different scopes.

Thus we lose equality by value for published identifiers; however we can define an
equality method on identifiers if the method resolves them down to the lowest common
denominator scope. Because scopes form a DAG not a tree, and because identifier length
does not tell you anything about how many prefixes may be hidden inside opaque
suffixes, it is impossible to tell how far down this is until the resolution is actually
performed.

We need to make the following restriction:

2.14.14.2. An identifier cannot be a leaf in more than one scope
This is tricky, since data repositories can always be copied. So we need to think about
how to define scopes for copies, and to consider replication possibilities to see if we can
relax this condition under certain carefully-controlled circumstances.

2.14.15. Uniqueness and equality
The idea of equality is very specific to individual information communities. Often the
same feature does require multiple names, even at the most fully-resolved level. The
classic example is a weather map:

• The map of 26 October 1998

• Today's weather map

Both are useful names, and at some time they may both point to the same resource
[URIres]. A resolver may support equality of feature R2R as well as equality of fully-
resolved identifier N2N, but if it does it will do it in an opaque way.

2.14.16. Internal identifiers and internal scopes

The OpenGIS® Abstract Specification Page 31
Volume 5: Topic 5: Features

All identifiers discussed in this background description are published, external identifiers.
Any repository can use any internal identification mechanism it likes so long as it can
support permanent, immutable external identifiers.

As an example, consider a system which uses 8-digit numbers as internal feature
identifiers. Such as system might want to be able to represent foreign identifiers (e.g. to
implement some feature-feature relationships) and it might do so by internally using
identifiers of the form "9xxxxxxx". The initial "9" indicating an external identifier. Such
a system would then have a bit of software in its export subsystem which published its
own identifiers as scoped-identifiers and replaced the foreign identifiers with the original
foreign scoped identifier (stored in some local registry).

The interesting thing about this example is that the initial "9" can itself be considered to
be a scope-prefix inside the proprietary system. This illustrates the general points that

• a scope "inside" another scope can actually be "larger" than the containing scope,
and that

• a resolving service may only be able to cope with a subset of the identifiers which
actually exist in a "sub"-scope.

The important property of an identifier is that is resolvable, not that it is readable.

2.14.17. Scope aliases
Some scopes may exist only to provide short-forms of identifiers, e.g. in the above
example a single digit "9" represented the entire outside world. A deeply-nested identifier
could accumulate a very long string of prefixes, so within an organisation or information
community, a scope resolver which provided short-form aliases could be useful.

Scopes can cross-reference each other, thus the opaque part of an X.500 scope may be a
URN which resolves to a Handle System identifier.

2.14.18. Published identifiers
Any identifier published, e.g. in an email or quoted by some other piece of general
purpose software for any value-adding purpose, must quote scope prefixes all the way
back to the most-global Well Known Scope. This is where it is particularly useful if the
prefixes understood by Well Known Scopes are not opaque but are readable as "hints".
The examples of the hints "hdl://" and "urn:" have already been mentioned.

2.14.19. FeatureCollection
Conceptually, there exists a FeatureCollection of all the features whose identifiers are in
the Scope, but

this FeatureCollection is not a Scope,

neither is a Scope a FeatureCollection,

they are just implicitly associated. The FeatureCollection may not be instantiatable even
in theory for some Scopes.

2.14.20. Methods of Feature Identity Scope
A Scope Object has these methods:

• Given an identifier, a scope object returns a sub-scope identifier and a sub-identifier.
("Traverse" method) N2N

• Given two identifiers, a scope object resolves them to a common scope, obtains a
canonical form, and then responds by saying whether they are equal or not.
("IsEqual" method) N=N

The OpenGIS® Abstract Specification Page 32
Volume 5: Topic 5: Features

• Given an identifier, determine if it is a leaf identifier in this scope N2R?

• Given a leaf identifier, return the object. This is a repository service method, not a
scope service. N2R

• Given a leaf identifier which we are pretty sure is a feature, not some other kind of
identifier, return us the feature [as a feature handle ?]. Again, this is a repository
service method. N2R

• We give it an object {handle?} and ask for a scoped-identifier in the current scope.
R2N

• We give it an object {handle?} and ask for a public, publishable scoped identifier
that contains all the scopes out to a Well Known Scope. (The "ComposeId" method).
R2N+!N2N

This last method is arguably implementable because we always know where we are in the
scope sequence because we must always have come "down" some route through the
scopes' DAG to get to the scope we are "in" now. Being able to produce a publishable
identifier is clearly a requirement, how it is done should be left to responses to an RFP.

A Scope is probably an Interface not a Class, (using Java nomenclature), i.e. the set of
Scope methods could be supported by many different objects of different classes.

It has been provisionally decided that we do not want or need a method on Feature where
you give it a scope and ask what its publishable identifier would be from that scope.

2.15. Feature Identifier Change Registries: Incremental Publishing
2.15.1. Conflict

Incremental update requires permanent feature identifiers, but also intrinsically means
that some identifiers will not be permanent because they will be deleted ("retired").

This conflict can be managed if designed properly. But we cannot suggest a solution
which requires any kind of centralised international database.

"In case that the source supports versioning, a registry of the relationship between the ID
of the original version and that of subsequent ones should be maintained. [...] Case 4:...
the client requires to be notified of any updates on the retrieved objects. A broadcast
mechanism can be designed such that the source sends an update alert on the network."
[Bishr99]

"These references include such things as value-added attributes, additional feature
relationships, etc. While it may be possible to resolve all of these references immediately
in a small centralized database, it is intractable considering the number of geospatial
databases and the volume of features currently in existence. Therefore, one must employ
a technique that supports on-demand resolution of these references at any point in the
future. This technique must also support tracing the lineage of a feature back in time
through changes in delineation, or forward to the present from some historical date."
[Hair97]

We address those feature identifiers which would be used to manage incremental updates.
These are almost certainly the same identifiers used to implement relationships (see
Topic 8). Compound objects are assumed to be implemented using relationships. We
assume a scope mechanism for resolution of scoped identifiers.

2.15.2. Fundamental Ideas
When we have permanent, immutable feature identifiers which are to be used by third-
party software, we must have some registry somewhere which records their replacements
by updated identifiers.

The OpenGIS® Abstract Specification Page 33
Volume 5: Topic 5: Features

Separating the specification of read-only access from update-editing simplifies things.

Hierarchical decomposition across scopes in which identifiers are managed to be
consistent is one good way to make identifier registries scalable and workable.

Resolution and clean-up, across a local domain, should be done as often as is sensible in
order to keep registries manageably small.

2.15.3. New concept
The concept of published- versus dirty-feature identifiers is introduced.

This turns out to be sufficient. We do not need to specify the full semantics of a formal
system to specify long-transaction or version control architectures.

2.15.4. Incremental Publishing
A key idea is that incremental publishing is what we want to achieve. We do not need at
this time an all-singing, all-dancing global peer-to-peer transactional universal historical
feature identifier monster.

This section is structured like this:

1. Incremental publishing requirement

2. Distributed edit/update requirement

3. Both together.

We can start simply, with read-only incremental updates to read-only GIS clients.

We then go on to consider a tight community which is collaboratively updating a GIS
dataset, e.g. within a single cartography publisher's organisation. This has lower priority
within OGC at this time.

We then show that these two architectures can be composed in one specific way which
works and has good global properties. There may be other ways of carefully composing
these two architectures.

2.15.5. Incremental Publishing
With incremental publishing, there is a notional single master database, the "publisher"
which periodically issues incremental updates. The clients have read-only copies of the
data which they can use in various value-added ways [Arctur98]. The thing they do that is
relevant to this discussion is that they create references to feature identifiers in other
software, web-pages, other GIS packages etc.

Example: a hydrographic agency distributes CD-ROMS of charts to pleasure-boat owners
with daily "notices to mariners" broadcast using the GSM telephone short-message
service. Some boat owners have add-on software which presents the data as a 3D
visualisation and correlates it with on-shore harbour information purchased from a
yachting club.

Thus every feature identifier which is sent out from the master is published and the
master takes responsibility for ensuring that it continues to be useful so long as clients
follow some simple instructions and implement a local registry.

Assume for the moment that the client only works within a closed group and no reference
is made to the data except via the client, i.e. a strict tree.

The client local registry contains an index of every feature identifier that the client has
used in its value added activities.

When an update packet arrives from the master, it contains the geodata update in some
file format and a feature identifier registry update, probably in some XML encoding. This

The OpenGIS® Abstract Specification Page 34
Volume 5: Topic 5: Features

says which identifiers are being split, merged and deleted [Arctur98]. (It probably lists all
the new ids too.) If the client has used any of these IDs, it has responsibility for:

1. either finding where they were used and replacing them,

2. or since the client always services the geodata requests for its value-added activities, it
can resolve outdated ids on-the-fly when it services the request.

When we resolve updated identifiers we have a choice:

1. replace all references to the old identifier with references to the new identifier, or

2. if the GIS can handle it, add the new object, create a relationship between the old and
new object, and update those references to the old object which require the "latest" copy
but keep references to the old object if they are intended to point to that old object.

The second option is one that often happens when there is a mixture of archive data
which must be kept consistent, e.g. compound objects represented using relationships,
and current data which must reflect the current configuration. Other software systems
distinguish the two by defining this behaviour as an aspect of the relationship type, like
cardinality or bidirectionality.

2.15.6. Non-tree client network
Now we relax the condition that access to the geodata is through a strict tree. This is more
than we need at this point in OGC since our user-base wants controlled incremental
publishing first.

Any set of clients which are synchronized in their updates can use each others value-
added software because the feature ids will be identical. [All clients treat the geodata as
read-only, remember.]

Now consider that one of these clients has created some additional information about an
object whose geodata is in the public domain. That client publishes a web-page
containing feature identifier references. A reader of that web-page may not want to go to
that client to get the public data, but wherever the reader goes to get it may not be
synchronized so some identifiers will be meaningless.

We can fall back on a universal master in this case (which could be replicated). It would
have to have interfaces appropriate for readers coming to it with identifiers from any one
of the historical update packages. If we say that clients must always quote their current
update package level ("patch number") whenever they quote a set of identifiers, then the
reader will know that and can get the appropriate resolution and thus correct data from
the master.

Note that when dealing with read-only data it is always possible to set up replicated
servers and client-side caches to improve scalability and performance.

2.15.7. Distributed Editing
Whereas incremental publishing must be able to cope with clients which may number in
hundreds of thousands who are largely out of control, our current requirements for
distributed editing involve a few tens of editing clients which are under close control.

It is the editing process which splits, merges and creates identifiers.

Example: a mapping organisation has 20 groups working on different segments of data.
These segments may be defined by tiles, irregular spatial boundaries or by theme (feature
class).

Each editor checks out a writeable segment from the common master database and works
on it, checking versions of his segment back in from time to time. Each editor creates
dirty feature identifiers which it has to reconcile with the master. It may reconcile its

The OpenGIS® Abstract Specification Page 35
Volume 5: Topic 5: Features

segment by keeping a copy and updating the identifiers with those it gets from the master,
but more likely it will just delete its local segment and re-check-out a new version of the
segment from the master.

After a while all editors have resolved their changes back into the master. At this point
the master can be published. [Note that this means that the version network has achieved
closure. This requirement will be relaxed later.]

All the dirty identifiers never leave the organisation in which they were created and no
editing client performs any value-added activity in which any identifier is used at all. As
segments are checked back in, new identifiers are either kept or renumbered if they
conflict with another, but they are never clean until the dataset as a whole is published
(perhaps as an incremental update, perhaps as a whole).

2.15.8. Responsibilities and compositions
So long as a client operates on an identifier strictly according to either the read-only
incremental publishing protocol or the distributed editing role, it can do both at once. So
some of its identifiers (those it got from an incremental update from the master) are
published and some (those it creates itself) are dirty. It can use the published ones in
value added activities, but it can't use the dirty ones. It has to wait until it gets them back
from the master in published form.

2.15.9. Local cleanliness
Alternatively, the editing client can use its own dirty identifiers if it takes full
responsibility for them for its sub-clients who use them, i.e. it acts like a master which a
whole subsidiary architecture of feature identifier update packets and identifier registries
at its sub-clients. If you issue a dirty identifier, it is your responsibility to clean up
afterwards.

This introduces the notion of "local cleanliness". A sub-subclient would not be aware that
it had a dirty identifier, and indeed, so long as it only talked to other sub-clients of the
same client (or to it's master - which we call an editing-client), the identifier would be
effectively published. It only appears dirty outside that little group. Everything is fine so
long as that little group achieves local closure, i.e. eventually the editing client reconciles
itself with its master and then cleans up all its sub-clients: then the sub-clients can be
normal clients of the master.

Dirtiness is thus a relative, not an absolute concept: it is only dirty outside the "isolation
ward". This is OK so long as we maintain our context properly which is why we do need
some Uniform Resource Name (URN) or handle system to keep track of who we are
talking to. DNS itself would be sufficient (if awkward) because it can define machine
aliases, but the extra level of indirection from a URN or handle system is well worth it
[Sargent99].

2.15.10. Out of control copying
How do we cope with out-of-control copying of data as we might find in the open
Internet ?

This is the situation where we cannot assume that a client has had all (or any) of the
interim update packets, or where anyone copies a dataset from a client without re-
registering with the master. This is fundamentally always possible, even if we were to
devise some Kerberos security architecture, if we do not use military-style no-write-down
no-read-up controls which are impossible.

This is the same problem as the "non tree client network" we discussed above, with the
same solution, unless the uncontrolled copy was made of dirty data. In that case the
original master won't be able to help, and the edit-update client may be unaware of the
copy and may have reconciled all its sub-clients and deleted all historical records of dirty

The OpenGIS® Abstract Specification Page 36
Volume 5: Topic 5: Features

identifiers. It will always delete them because that is the whole point of reconciliation, to
save space in what otherwise would be an exponentially expanding identifier list.

This remaining unresolvable problem will always be with us in some form: someone can
always take a copy of data, change it in an arbitrary way, then give it to someone else and
vanish. Thus the fact that we can't deal with this case is not important as no system can
deal with it.

2.15.11. Handles for servers
The handle (URN) for a master which issues update packets needs to be written into the
header of the packet so that a client which needs the next update always knows where to
find it.

The individual identifiers in the packet should also be annotated with their server's URN
if they are being passed on from another master server. That is the same thing as saying
that an update-editing client which put out its own dirty identifiers would use its own
URN as a prefix for the dirty ones, while using its master's URN as a prefix for the
published ones. Thus a sub-client within an "isolation ward" would in fact be able to tell
the difference between globally published and locally published (globally dirty)
identifiers.

2.15.12. Identifier update packet
What would an update packet look like ? The geodata part would be some established
file-format which had feature identifiers, e.g. an object form of SDTS [Arctur98], or a set
of OGC Simple Feature transactions. The identifier part of the packet might look use
some XML language.

2.15.13. Relationships
Between which objects can we support relationships ?

Easily between objects which are in the same update packet.

Also between pre-existing objects and objects in the update packet after published
identifiers have been resolved. Though if we have bidirectional relationships, this may be
the same thing as the previous point since related objects would be updated.

Any relationship which uses a dirty identifier is a dirty relationship and subject to the
same usage constraints.

2.15.14. GIS requirements
What must a GIS be able to do in order to participate in this scheme?

Simple. The minimum and maximum requirements are the same: it must support
permanent, immutable feature identifiers within itself. Everything else, the identifier
registries etc., can all be handled by external, add-on software which translates the
identifiers into some internal form for the GIS and which can handle URNs to talk to
master servers and read update packets.

2.15.15. Last word
The version control architecture described here is over-simple with a single binary
distinction between published and dirty identifiers. OGC will eventually need a proper
long-transaction protocol, version semantics etc. This is a short-cut: everything which
really should be logically distinct and separately specified at different levels of
abstraction has been bundled together for the sake of speed and simplicity. This is not a
long-term solution, but it may be good enough for now.

2.16. References to Section 2

The OpenGIS® Abstract Specification Page 37
Volume 5: Topic 5: Features

[1] [Cook94] Cook, Steve, and John Daniels, Designing Object Systems: Object-Oriented
Modelling with Syntropy, 1994, 389 pp. Prentice Hall Press; URN:ISBN:0132038609

[2] [OGCSF] Open GIS Consortium, 2006. The OpenGIS® Simple Features
Implementation Specification Parts 1 and 2. Available at
http://www.opengeospatial.org/standards/

[3] <No longer applicable. Part of the TC Policies and Procedures>
[4] [Bishr99] A Globally Unique Persistent Object ID for Geospatial information Sharing,

Yaser A. Bishr, Interop'99
submission.http://www.opengis.org/members/fid.wg/index.htm

[5] [Sargent99] Feature Identities, Descriptors and Handles, Philip Sargent, Interop'99
submission.

[6] [Arctur98] Issues and prospects for the next generation of the spatial data transfer
standard (SDTS), David Arctur, David Hair, George Timson, E.Paul Martin, Robin
Fegeas. IJGIS (1998) 12 (4) 403-425.

[7] [Hair97] Feature Maintenance Concepts, Requirements, and Strategies, Version 3.0 May
28, 1997, David Hair, EROS Data Center, George Timson, Mid-Continent Mapping
Center , Paul Martin, Rocky Mountain Mapping Center.Published by U.S. Geological
Survey/National Mapping Division.
http://wagic.wa.gov/Framework/cadastre/presentations/acsm1999paper.htm

[8] [UML]Unified Modeling Language Documentation Set Version 1.1, Santa Clara,
California.

[9] [Z39.50] Information Retrieval (Z39.50): Application Service Definition and Protocol

Specification, ANSI/ISO Z39.50-1995, Official Text, July 1995, Z39.50 Maintenance
Agency.

[10] [LDAP] K. Zeilenga, "Lightweight Directory Access Protocol: Technical Specification
Road Map ", Internet Engineering Task Force (IETF) Request For Comment (RFC) 4510,
2006. http://tools.ietf.org/html/rfc4510

[11] [URNDNS] Daniel, R., Mealling, M.: Resolution of Uniform Resource Identifiers using
the Domain Name System, Internet Engineering Task Force (IETF) Request For
Comment (RFC) 2168, June 1997, http://www.ietf.org/rfc/rfc2168.txt

[12] [URNhttp] Daniel, R: A Trivial Convention for using HTTP in URN, Internet
Engineering Task Force (IETF) Request For Comment (RFC) 2169, June 1997,
http://www.ietf.org/rfc/rfc2169.txt

[13] [URN] Moats, R.: Uniform Resource Name Syntax, Internet Engineering Task Force
(IETF) Request For Comment (RFC) 2141, May 1997,
http://www.ietf.org/rfc/rfc2141.txt

[14] URNres] Sollins, K.: Architectural Principles of Uniform Resource Name Resolution,
Internet Engineering Task Force (IETF) Request For Comment (RFC) 2276, January
1998, http://www.ietf.org/rfc/rfc2276.txt

[15] [URIres] Mealling, M., Daniel, R: URI Resolution Services Necessary for URN
Resolution, Internet Engineering Task Force (IETF), March 1999.
http://www.ietf.org/rfc/rfc2483.txt

[16] [URI] Berners-Lee, T, Fielding, R., Irvine, U.C., Masinter, L.: Uniform Resource
Identifiers (URI): Generic Syntax, Internet Engineering Task Force (IETF) Request For
Comment (RFC) 3986, August 2005, http://www.ietf.org/rfc/rfc3986.txt

[17] [Shklar97] New approaches to cataloging, querying and browsing geospatial metadata,
L.Shklar, C.Behrens, E.Au, IEEE Metadata Conf., 1997.
http://computer.org/conferen/proceed/meta97/papers/lshklar/lshklar.html

The OpenGIS® Abstract Specification Page 38
Volume 5: Topic 5: Features

http://www.opengis.org/members/fid.wg/index.htm
http://wagic.wa.gov/Framework/cadastre/presentations/acsm1999paper.htm
http://www.ietf.org/rfc/rfc2168.txt
http://www.ietf.org/rfc/rfc2169.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2276.txt
http://www.ietf.org/rfc/rfc2483.txt
http://www.ietf.org/rfc/rfc3986.txt
http://computer.org/conferen/proceed/meta97/papers/lshklar/lshklar.html

The OpenGIS® Abstract Specification Page 39
Volume 5: Topic 5: Features

[18] [UMLguide] The Unified Modeling Language Guide, G.Booch, J. Rumbaugh, I.
Jacobson, Addison-Wesley 1999. http://www-01.ibm.com/software/rational/

3. The Abstract Model for Feature, Feature Identifier, Identifier Scope,
Identifier Change Registry, Feature Repository and Feature
Collection

3.1. FT_Feature
3.1.1. FT_FeatureType

An FT_Feature is of one FT_FeatureType. An FT_Feature must yield its type on demand
to an OpenGIS client in a ‘well known’ format.

The term “well known” in this context means defined using some means commonly
understandable by OpenGIS clients. This could be explicitly defined in the
implementation specification but preferably some means available through the underlying
distribution technology will be used .

An FT_Feature may yield its type (when demanded) directly or by passing a reference to
a ‘FT_FeatureType’ object.

3.1.2. FT_FeatureAttribute
An FT_Feature has associated FT_FeatureAttributes. Each FT_FeatureAttribute is has a
value within the valid domain of the attribute. Names and types of FT_FeatureAttributes

are defined by the classes in the AT_Attribute package they inherit from.

The full range of sub-classes of
AT_Attribute reflects the range
of possible attribute types that
can be used on features and
relationships.

AT_IntegerAttribute

value : Integer
(from AT_Attribute)

AT_StringAttribute

value : String
(from AT_Attribute)

AT_XXXXAttribute

value : XXXX
(from AT_Attribute)

FT_IntegerFeatureAttribute FT_StringFeatureAttribute FT XXXXFeatureAttribute

FT_FeatureAttribute

Figure 3-1 The FT_FeatureAttribute

A subset of the attributes of an FT_Feature may be geometric. This subset may, among
other things, represent the spatial extent of the FT_Feature. This subset may be empty for
FT_Features of some FT_FeatureTypes. In this specification, the UML takes precedence
over text when the UML is more specific.

The OpenGIS® Abstract Specification Page 40
Volume 5: Topic 5: Features

many others
.......

The domain of 'type' is an enumeration
of datatypes that can be used for
feature and relationship attributes.
These are essentially an agreed set of
simple datatypes together with
some geometic datatypes.
This is mirrored by the sub-classes of
AT_Attribute.

AT_AttributeType
name : String
type

AT_Attribute

AT_IntegerAttribute
value : Integer

AT_StringAttribute
value : String

AT_XXXXAttribute
value : XXXX

Figure 3-2 The AT_Attribute Package

The OpenGIS® Abstract Specification Page 41
Volume 5: Topic 5: Features

the sub-class of
FT_FeatureAttribute
that is instantiated is defined by
FT_FeatureAttributeType.type

AT_AttributeType

name : String
type

(from AT_Attribute)

FT_FeatureAttributeTyp

FT_FeatureType
name : String

1

0..*

+defines
1

+has attribute type
0..*

FT_FeatureAttribute
10..*

+has type

1

+has instance

0..*

FT_Feature
10..*

+has type

1

+has instance

0..*

*

1

+has attribute
*

{cardinality is the same as
FT_FeatureType.has attribute
t }

+the feature
1

Figure 3-3 The FT_FeatureType

The OpenGIS® Abstract Specification Page 42
Volume 5: Topic 5: Features

3.1.3. FT_FeatureIdentifier
An FT_Feature has a single identifier that is unique within a single FT_IdentifierScope
and, in general, independent of the value of any or all of its associated attributes

Basing identity on a key of one or more attribute values, a technique sometimes used by
RDBMSs, is not precluded. Such a technique, however, is not mandated. Many systems
have a concept of identity that cannot be adequately addressed by a candidate key and
this independence must be preserved across OpenGIS databases. Many of the uses of
FT_FeatureIdentifiers, e.g. for incremental publishing or for relationships between
FT_Features in different FT_IdentifierScopes, or the requirement for persistent,
immutable identifiers, cannot be met by a candidate key approach without imposing
severe usage limitations, e.g. read-only access forever.

Requiring unique identity within a Scope does not allow for such devices as ‘temporary’
or 'alias' identities within the same Scope. It does allow for identification of temporary
FT_Features: e.g. identity for FT_Features that only exist (and are therefore only
reachable) within the context of a database session, i.e. in another Scope with limited
persistence.

3.1.4. FT_Feature Persistence
An FT_Feature is generally persistent. An FT_Feature can be “reached” (accessed or a
route to access returned) from its FT_LeafIdentifier. If this is no longer reachable, then
the FT_Feature, if reached by other means, e.g. a query on attribute values, has to be
considered to be a different FT_Feature with a different identifier.

3.1.5. FT_Feature Instances
An FT_Feature may also be referred to as An FT_Feature Instance.

3.2. FT_Identifier
3.2.1. Characteristics of FT_Identifiers

An FT_Feature's identity is represented by An FT_Identifier. This may be either a leaf
identifier (FT_LeafIdentifier) or a scoped identifier (FT_ScopedIdentifier).

An FT_Identifier has meaning only within an FT_IdentifierScope (definition of
identifier)

A published FT_ScopedIdentifier of an FT_FEature, together with the
FT_ScopedIdentifier of the FT_IdentifierScope, can be used to refer to an FT_Feature or
to assert an informal and uncontrolled relationship with an FT_Feature in a data
repository which may have no management authority in common with the agency using
the identifier.

The OpenGIS® Abstract Specification Page 43
Volume 5: Topic 5: Features

FT_WellKnownScope

Every persistant
object has one Leaf
Identifier
and may have several
ScopedIdentifiers

A Scope resolves identifiers either to
objects (Leaf) or to other identifiers (Scoped)

Types and
relationships
schema
information
also needs
to be
persistant

This UML says that the top level
enclosed identifier is not opaque,
but we wish to say that it can be
opaque and it is obtained as a
result of the resolve() operation
on the Scope

FT_LeafIdentifier

FT_PersistentObject
identifier : FT_Identifier

1

1

1

1

FT_IdentifierScope

resolve() : Identifier
0..*1 0..*1

FT_Identifier

FT_ScopedIdentifier

resolve() : Identifier

0..*1 0..*1

0..*

1

0..*

1

1..*

1

1..*

1

1

0..1

1

0..1

resolve

FT_Feature

Figure 3-4. Scoped Identifiers

3.3. FT_IdentifierScope
3.3.1. Characteristics of FT_IdentifierScope

An FT_IdentifierScope has a persistent FT_Identifier which represents itself.

An FT_IdentifierScope exists within an environment.

Any published FT_ScopedIdentifier must be with ultimate reference to an
FT_WellKnownScope.

An FT_WellKnownScope is a scope of scope identifiers.

An FT_IdentifierScope is not an FT_FeatureCollection.

An FT_Feature Collection is not an FT_IdentifierScope.

3.3.2. Methods of FT_IdentifierScope
Given an FT_Identifier within its scope, an FT_IdentifierScope object returns either an
FT_LeafIdentifier or a FT_ScopedIdentifier with the FT_IdentifierScope within which it
has meaning ("resolve()" method).

Given two FT_Identifiers, an FT_IdentifierScope object resolves them to a common
scope, obtains a canonical form, and then responds by saying whether they are equal or
not. ("isEqual()" method) Not all Scopes may be able to implement this fully or at all
times.

Given an FT_Identifier, determine if it is an FT_LeafIdentifier in this
FT_IdentifierScope.

The OpenGIS® Abstract Specification Page 44
Volume 5: Topic 5: Features

Given an FT_LeafIdentifier, return some means of accessing or obtaining the object, e.g.
a reference to or description of the repository holding the object.

Given an FT_Feature within this FT_IdentifierScope, ask for its FT_LeafIdentifier in this
scope.

Given an FT_Feature within this FT_IdentifierScope, ask for a public, publishable
FT_ScopedIdentifier that contains all the scopes out to a Well Known Scope. (The
"composeId()" method).

Implement some procedure for maintaining consistency for published
FT_ScopedIdentifiers through an FT_IdentifierChangeRegistry architecture or some
equivalent mechanism.

3.4. FT_IdentifierChangeRegistry
3.4.1. Change Registry Characteristics

An FT_IdentifierChangeRegistry is a persistently available cache which records which
FT_Identifiers were replaced or retired. It only need contain information on published
FT_ScopedIdentifiers.

3.5. FT_FeatureRepository
3.5.1. FT_FeatureRepository Characteristics

An FT_FeatureRepository is an FT_FeatureCollection with certain responsibilities for the
issuing and maintenance of FT_Identifiers.

An FT_FeatureRepository is an FT_FeatureCollection which implements repository
functions.

Given an FT_LeafIdentifier which we are sure identifies an FT_Feature and not some
other kind of object, return us the FT_Feature or an interface to it.

An FT_FeatureRepository manages access to FT_Features.

An FT_FeatureRepository collaborates with FT_IdentifierScopes and
FT_IdentifierChangeRegistries (or similar) to maintain published FT_Identifiers when
such identifiers change.

3.6. FT_FeatureType
3.6.1. FT_FeatureType Characteristics

Every FT_Feature instance has an FT_FeatureType.

Each FT_FeatureType has an FT_Identifier.

An FT_FeatureType is defined by a set of attribute definitions and role definitions (see
Topic 8). Either set (or both) may be the null set.

Each FT_FeatureAttributeType definition has a name and a type (inherited from
AT_AttributeType). The type is a defined domain of valid attribute values. Attribute
types are either ‘well known’ or are able to expose their structure in a ‘well known’
format on demand. They may be simple basic types (longs, floats, strings, etc.) or
geometries. They may not be FT_Feature identifiers (e.g. a reference to an FT_Feature of
a particular type), such inter-FT_Feature references should use the Relationships facilities
described in Topic 8.

An FT_FeatureType may also define a set of other FT_FeatureTypes for which it is
substitutable. Whether this is achieved through single or multiple inheritance, aggregation

The OpenGIS® Abstract Specification Page 45
Volume 5: Topic 5: Features

The OpenGIS® Abstract Specification Page 46
Volume 5: Topic 5: Features

or some other means is an implementation issue. For example, if FT_FeatureType B is
defined as being substitutable for FT_FeatureType A then each instance of Type B can be
used wherever an instance of Type A is permitted, e.g. in a relationship (see Topic 8).

The FT_FeatureAttributeType set of an FT_FeatureType is a superset of the
corresponding sets for all FT_FeatureType for which it is substitutable.

3.7. FT_FeatureCollection
3.7.1. Characteristics of FT_FeatureCollections

An FT_FeatureCollection is an FT_Feature instance that groups other FT_Features.

As an FT_Feature Collection is also an FT_Feature, FT_FeatureCollections have
FT_FeatureType, FT_Identifier, an associated set of FT_FeatureAttributes. There are
many examples of an FT_FeatureCollection where it seems counter-intuitive to describe
it as an FT_Feature (e.g. scope of a query). The countering argument is that many of the
mechanisms defined for FT_Features (attributes, type) are equally applicable to
FT_FeatureCollections and that defining an FT_FeatureCollection as an FT_Feature
allows for the construction of complex hierarchies or networks of FT_Features.

Uses of FT_FeatureCollections include the representation of a physical or logical
repository of FT_Features (an FT_FeatureRepository), a complex or composite
FT_Feature; the result of a query; the scope of a query; an ad-hoc collection created for a
particular purpose. An FT_FeatureCollection representing a persistent complex or
composite FT_Feature should use explicit FT_FeatureRelationships (see Topic 8) to
represent this.

FT_FeatureCollections may be transient or persistent.

4. Future Work
• As Implementation Specifications evolve, this topic must be edited to maintain

alignment with them.

• Reconcile this with the Topic 13 and the Catalog proposals.

• Much of the discussion of Feature in the first half of section 2 concerns Geometries,
which are an attribute domain for Features. This material should be removed to
Topic 1.

• The whole area of schema discovery needs to be tackled, e.g. what FeatureTypes are
allowed in any dataset, what attribute domains are supported etc. This overlaps with
the Catalog work (Topic 13) and is particularly relevant for Feature Relationships
(Topic 8). When we describe schema discovery interfaces we must be careful not to
rule out those GISs which support dynamic schema updates.

• The 9-layer model has significant flaws, in particular the level at which we put
Geometry is not in accord with the specifications we wish to produce.

• An FT_FeatureRepository (Datastore) is an FT_FeatureCollection with certain
responsibilities for the issuing and maintenance of FT_Identifiers. Do we need some
contraints on the FT_FeatureTypes of FT_FeatureCollections ?

• More work on FT_FeatureCollections is needed if we wish to issue RFPs requiring
them. What are the fundamental classes and subclasses of Feature Collection. How
do they behave? What are the relations between them and FT_Features, Catalogs,
Metadata, Schema, and other objects, and between themselves?

• In future, an FT_Feature may participate in various processes. The set of valid
processes in which it may participate will be defined (directly of indirectly) by the
FT_Feature’s FT_FeatureType. This concept of process participation is intended to
be broad enough to include object methods, static functions and stored procedures.

The OpenGIS® Abstract Specification Page 47
Volume 5: Topic 5: Features

5. Appendix A: Well Known Structures

5.1. Well-Known Structures
Feature Geometry (that is, the AttributeValue for the AttributeName “OGCGeometry”)
have their WKS detailed in Topic 1: Feature Geometry. [1]

Coordinate reference systems will have their WKS listed in Topic 2: Coordinate
reference Systems. [2]

Other WKS associated with Features are to be found in the Implementation
Specifications for OGC Simple Features. [3]

Identifier Update Packets may need a WKS; which is more likely to be an XML encoding
than a binary format.

5.2. References to Appendix A
[1] Open Geospatial Consortium and ISO, 2001. Abstract Specification Topic 1: Feature

Geometry. Available at http://www.opengeospatial.org/standards/as
[2] Open Geospatial Consortium and ISO, 2004. Abstract Specification Topic 2: Spatial

Reference by Coordinates. Available at http://www.opengeospatial.org/standards/as
[3] Open Geospatial Consortium, 2006. The OpenGIS® Simple Features Implementation

Standard Part 1 - Common Architecture. Available at
http://www.opengeospatial.org/standards/sfa

The OpenGIS® Abstract Specification Page 48
Volume 5: Topic 5: Features

http://www.opengeospatial.org/standards/as
http://www.opengeospatial.org/standards/as

6. Appendix B. The ISO TC211 General Feature Model
The ISO TC211 15046 Part 9: Rules For Application Schema standard [1] describes a
general feature model that places the geometry in the context of its use to describe the
location of features. Although this model does not overtly affect the geometry model, it
does form the basis for assumptions on the use of this model in individual application
implementations. Figure 6-1 places the feature packages in context with the geometry
packages.

Feature Relations
+ FeatureTopolgy
+ FeatureRelationship

Gen Feature
(from Logical View)
+ Feature

Feature Attributes
+ FeatureAttribute
+ LocationalAttribute
+ TemporalObject
+ SpatialAttribute
+ NonSpatialAttribute
+ TemporalAttribute
+ FeatureFunction

Geometry
(from Logical View)

Positioning
(from Logical View)
+ GeographicalIdentifier
+ Location
+ SpatialReferenceSystem
+ DirectPosition

Figure 6-1. Feature Model Packages (from Rules for Application Schemas)

Figure 6-2: General Feature Model (from Rules for Application Schemas) details the
internal structure of the feature packages as derived from Part 9: Rules For Application
Schema [1].

The OpenGIS® Abstract Specification Page 49
Volume 5: Topic 5: Features

FeatureRelationship
(from Feature Relations)

FeatureTopolgy
(from Feature Relations)

FeatureAttribute

+ name : Character
+ valueType : Type

(fr om Feature Att ributes)

Feature

0..*

1

0..*

1

Attributes

FeatureFunction
(from Feature Attributes)

0..*0..*

Functions

LocationalAttribute
(from Feature Attributes)

GeographicalIdentifier
(fr om Positioning)

Value

NonSpatialAttribute
(f rom Feature Attributes)

SpatialAttribute
(from Feature Attributes)

GM_Object
(f rom Geometr y)

<<Interface>>

Value

TemporalAttribute
(from Feature Attributes)

TemporalObject
(f rom Feature Attributes)

Value

Figure 6-2: General Feature Model (from Rules for Application Schemas)

6.1. References
[1] International Standard ISO 15046-9, Geographic information — Part 9: Rules for

application schema, Technical Committee ISO/TC 211 Geographic
Information/Geomatics.

The OpenGIS® Abstract Specification Page 50
Volume 5: Topic 5: Features

	1. Introduction
	1.1. The Abstract Specification
	1.2. Introduction to Features
	1.3. Information Models
	1.4. Terms and Definitions
	1.5. References for Section 1

	2. The Essential Model for Features
	2.1. General Notion of Geographic Information
	2.2. Introduction to the Notion of a Information Community
	2.3. The Real World
	2.4. The Conceptual World
	2.5. The Geospatial World
	2.6. The Dimensional World
	2.7. The Project World (or The “World View”)
	2.7.1. Introduction to the Modeling of Geospatial Features
	2.7.2. Introduction to the Project World from the “Feature With Geometry” Point of View
	2.7.3. Project World Feature Instances
	2.7.4. Project World Feature Types
	2.7.5. Project World Geometry
	2.7.6. Project World Envelope
	2.7.7. Project World Geometry Schema
	2.7.8. Coordinate reference System
	2.7.9. Project World Attribute-Value Pairs
	2.7.10. Project World Attribute Schema and Feature Schema
	2.7.11. Project Schema

	2.8. The Point World
	2.9. The Geometry World
	2.10. The Feature World
	2.10.1. Feature Collections
	2.10.2. Interfaces on Feature Collections
	2.10.3. Background Notes on Feature Collections

	2.11. Summary of the Nine Layer Model
	2.12. An Alternative Perspective to the Nine Layer Model
	2.13. Persistent Feature Identifiers
	2.13.1. Problem Statement

	2.14. Resolving Scoped Feature Identifiers
	2.14.1. Fundamental Ideas
	2.14.2. Key concept
	2.14.3. Key supporting concept
	2.14.4. Principles
	2.14.5. Resolver Services
	2.14.6. Further Example
	2.14.7. Hints
	2.14.8. Well Known Scopes and URNs
	2.14.9. Uniform Resource Names
	2.14.10. What resolution does
	2.14.11. Resolution, discovery and access
	2.14.12. Handles and descriptors
	2.14.13. Permanent scope objects
	2.14.14. Uniqueness of identifiers
	2.14.14.1. The same feature can be in several Scopes
	2.14.14.2. An identifier cannot be a leaf in more than one scope

	2.14.15. Uniqueness and equality
	2.14.16. Internal identifiers and internal scopes
	2.14.17. Scope aliases
	2.14.18. Published identifiers
	2.14.19. FeatureCollection
	2.14.20. Methods of Feature Identity Scope

	2.15. Feature Identifier Change Registries: Incremental Publishing
	2.15.1. Conflict
	2.15.2. Fundamental Ideas
	2.15.3. New concept
	2.15.4. Incremental Publishing
	2.15.5. Incremental Publishing
	2.15.6. Non-tree client network
	2.15.7. Distributed Editing
	2.15.8. Responsibilities and compositions
	2.15.9. Local cleanliness
	2.15.10. Out of control copying
	2.15.11. Handles for servers
	2.15.12. Identifier update packet
	2.15.13. Relationships
	2.15.14. GIS requirements
	2.15.15. Last word

	2.16. References to Section 2

	3. The Abstract Model for Feature, Feature Identifier, Identifier Scope, Identifier Change Registry, Feature Repository and Feature Collection
	3.1. FT_Feature
	3.1.1. FT_FeatureType
	3.1.2. FT_FeatureAttribute
	3.1.3. FT_FeatureIdentifier
	3.1.4. FT_Feature Persistence
	3.1.5. FT_Feature Instances

	3.2. FT_Identifier
	3.2.1. Characteristics of FT_Identifiers

	3.3. FT_IdentifierScope
	3.3.1. Characteristics of FT_IdentifierScope
	3.3.2. Methods of FT_IdentifierScope

	3.4. FT_IdentifierChangeRegistry
	3.4.1. Change Registry Characteristics

	3.5. FT_FeatureRepository
	3.5.1. FT_FeatureRepository Characteristics

	3.6. FT_FeatureType
	3.6.1. FT_FeatureType Characteristics

	3.7. FT_FeatureCollection
	3.7.1. Characteristics of FT_FeatureCollections

	4. Future Work
	5. Appendix A: Well Known Structures
	5.1. Well-Known Structures
	5.2. References to Appendix A

	6. Appendix B. The ISO TC211 General Feature Model
	6.1. References

