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1. Introduction 

1.1. The Abstract Specification 
The purpose of the Abstract Specification is to document a conceptual model sufficient 
enough to allow for the creation of OGC Implementation Standards. The Abstract 
Specification consists of two models derived from the Syntropy object analysis and 
design methodology [1].  

The first and simpler model is called the Essential Model and its purpose is to establish 
the conceptual linkage of the software or system design to the real world. The Essential 
Model is a description of how the world works (or should work).  

The second model, the meat of the Abstract Specification, is the Abstract Model that 
defines the eventual software system in an implementation neutral manner. The Abstract 
Model is a description of how software should work. The Abstract Model represents a 
compromise between the paradigms of the intended target implementation environments. 

The Abstract Specification is organized into separate topic volumes in order to manage 
the complexity of the subject matter and to assist parallel development of work items by 
different Working Groups of the OGC Technical Committee. The topics are, in reality, 
dependent upon one another⎯ each one begging to be written first. Each topic must be 
read in the context of the entire Abstract Specification.  

The topic volumes are not all written at the same level of detail.  Some are mature, such 
as those ISO documents that are used as part of the Abstract Specification.  . The level of 
maturity of a topic reflects the level of understanding and discussion occurring within the 
OGC Technical Committee. Refer to the OGC Technical Committee Policies and 
Procedures [2] document for more information on the OGC standards development 
process. 

Refer to Topic Volume 0: Abstract Specification Overview [3] for an introduction to all 
of the topic volumes comprising the Abstract Specification and for editorial guidance, 
rules and etiquette for authors (and readers) of OGC specifications. 

1.2. Introduction to Features 
From ISO 19101, “A feature is an abstraction of a real world phenomenon”; it is a 
geographic feature if it is associated with a location relative to the Earth. Vector data 
consists of geometric and topological primitives used, separately or in combination, to 
construct objects that express the spatial characteristics of geographic features. Raster 
data is based on the division of the extent covered into small units according to a 
tessellation of the space and the assignment to each unit of an attribute value. Attributes 
of (either contained in or associated to) a feature describe measurable or describable 
properties about this entity. Unlike a data structure description, feature instances derive 
their semantics and valid use or analysis from the corresponding real world entities’ 
meaning.  Documenting feature instances, types, semantics and their properties is often 
detailed in an information model. 

1.3. Information Models 
An information model details how to take real world ideas or objects and make them 
useful to a computer system. In the geospatial world the focus is on depicting things in 
the real world as points, lines, or polygons (the geometry ”primitives” we use to assemble 
location data about those real world objects) and their attributes (information about those 
objects). When linked together, a pair (geometry and attributes) representing one or more 
real world objects, is called a feature. 

In ISO 19101, there is the concept of the Domain reference model. The DRM provides a 
high-level representation and description of the structure and content of geographic 
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information. For the purposes of this document, the information and domain reference 
models are synonymous. 

1.4. Terms and Definitions 
The following terms and definitions used in this document are from various ISO 
documents, including 19101 [4], 19111 [6] and 19107 [5] 

• Coordinate: one of a sequence of N-numbers designating the position of a point in 
N-dimensional space [6] 

• Coordinate System: set of mathematical rules for specifying how coordinates are 
to be assigned to points [6] 

• Coordinate Reference System: coordinate system that is related to the real world 
by a datum [6] 

• epistemic - Of, relating to, or involving knowledge; cognitive. Adj. of or relating to 
epistemology; "epistemic modal" 

• Feature: abstraction of real world phenomena 
• Feature Collection (see Record) 
• geographic information: information concerning phenomena implicitly or explicitly 

associated with a location relative to the Earth [4] 
• Point: 0-dimensional geometric primitive, representing a position 
• Record: finite, named collection of related items (objects or values) [5] 

 

1.5. References for Section 1 
[1] Cook, Steve, and John Daniels, Designing Objects Systems: Object-Oriented Modeling 

with Syntropy, Prentice Hall, New York, 1994, 389 pp. 
[2] Open Geospatial Consortium, 2008. OGC Technical Committee Policies and Procedures, 

Wayland, Massachusetts. Available via the WWW as < 
http://www.opengeospatial.org/ogc/policies >. 

[3] Open Geospatial Consortium, 2005.  Topic 0, Abstract Specification Overview, Wayland, 
Massachusetts.  Available via the WWW as < 
http://www.opengeospatial.org/standards/as >. 

[4] ISO 19101:2005 - Geographic information. Reference model 
[5] ISO 19107:2003. Geographic information -- Spatial schema. 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=2601
2  

[6] ISO 19111: Spatial Referencing by Coordinates 
 

http://www.opengeospatial.org/ogc/policies
http://www.opengeospatial.org/standards/as
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26012
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26012


2. The Essential Model for Features 

2.1. General Notion of Geographic Information 
Geospatial information is anything that you can learn by looking at maps -- not just 
traditional maps, but new, creative, digital maps and earth visualization systems. A map, 
after all, is simply a metaphor for the Earth itself. We therefore accept raster Earth 
imagery as a kind of map, and even less structured collections of samples of Earth 
phenomena with any kind of instrumentation as acceptable maps. For the purposes of this 
document, we use the term “map” in a very broad sense – encompassing all earth 
metaphors from traditional paper maps to 3d earth visualization systems. 

We can learn about phenomena that vary with time by looking at special maps designed 
to reveal temporal differences and events. However, the study of the temporal aspect of 
geospatial information in 4-space is postponed for a later version of this document. For 
now, we will assume that phenomena do not change, or that temporal aspects of 
geospatial information can be held as attributes of features. 

The fundamental unit of geospatial information is called a feature. Features may be 
defined recursively, so there can be considerable variation in feature granularity. For 
example, depending on the application or interests of the information gatherer, any of the 
items in Figure 2-1 could be a feature. 

  Potential Features
A segment of a road
between consecutive

intersections

A numbered  highway
consisting of many

road segments

A georeferenced
satellite image

A single pixel  from
the image mentioned

at the left

A temperature overlay
on a weather map

A triangulated
irregular network

A dynamically
segmented road

A drainage network

A set of siesmic event
magnitude contours

 
Figure 2-1: Example Features 

The collection and use of geospatial information has one purpose: to communicate 
knowledge about phenomena that have location. For example, the knowledge imparted 
by the map answers two kinds of questions: "where" and "what."  Maps can tell us where 
things are, both in relation to other nearby things. Maps also can tell us what things are, 
either through symbology (e.g., by use of color or line pattern whose meaning is 
explained in a legend) or through text or tabular annotations or multi-media links. The 
same goes for attributes that modify or extend our knowledge of things.  

Digital geospatial information is geospatial information that has been encoded into a 
digital form. The encoding is done so that computer resources can be applied to automate 
the business of geospatial information processing: storage, transmission, analysis, 
visualization and so forth.  

There are many different ways to create digital representations of geospatial information. 
This richness of alternatives is more a curse than a blessing since it has created the 
confusing and apparently chaotic variety of Geographic Information System (GIS) data 
structures and formats now confronting GIS users.   
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This Abstract Specification exists to help bring order to this chaos and to provide the 
foundation model upon which the OGC standards are based. 

2.2. Introduction to the Notion of a Information Community 
Typically, geographic features – such as “road” - are defined in the context of an 
Information Community. Broadly speaking, an Information Community (IC) is a 
collection of systems or individuals who share a common understanding of information 
and processes for their specific domain. This implies that the members of the information 
community share common understanding of their domain world, including definitions, 
vocabularies, interests, mutual awareness, and common technology sufficiently that they 
have the potential – and perhaps the capability - to share and use the information. For 
example, a state Department of Transportation is an Information Community. Any given 
DoT has a shared agreement on how they define any geographic feature within their IC, 
such the definition and semantics for a feature type “road”. 

Information sharing between two individuals not belonging to the same information 
community is usually impeded by any of three conditions.  

1. Ignorance of the existence of information outside one’s own information 
community.   

2. Modeling of phenomena not of mutual interest.  

3. Modeling of phenomena in two representations different from each other such 
that each is not recognized by the other.  

The third condition is very, very typical in the geospatial community. Continuing our 
example of roads, different Departments of Transportation (different information 
communities) define and collect road features differently. The result is that a State 
boundary, a road may have different names, different semantics, different accuracy 
metadata and so forth. 

The OGC provides a forum for enabling ICs to articulate and discuss their domain of 
interest. This is critical. A key aspect of interoperability is for one or more information 
communities to interact and drive to consensus for a common understanding (vocabulary 
and semantics) for their information domain. These information models define feature 
types and their properties. The goal to is define an information model for their 
community. Technology is then deployed that uses the information model. For example, 
in the US, each state DOT is essentially an independent information domain with their 
own processes, policies, funding sources, etc. Even so, if we are to address broader 
interoperability issues, such as cross state sharing of transportation data, the State DoTs 
need to collaborate and define a common information model.  

This document explores how an IC can formalize and unify its information-theoretic 
foundations to ensure that information sharing within its community is straightforward. 
As we will see, the process of formalization of information models for a community 
actually benefits communication between widely separated ICs, because it exposes the 
semantics of specialists within each community in a structured way. 

Following we discuss several levels of abstraction implicit when modeling real-world 
facts to create information models.  

This section discusses the layers of abstraction between real-world facts and their 
representation as a collection of Features with Geometry. Nine layers of abstraction are 
identified, with eight interfaces between them. The layers of abstraction, their names, the 
languages they use, their interfaces, and the methods that support navigation through the 
interfaces are all identified in Figure 2-2.  
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Figure 2-2: Nine Layers of Abstraction 

We will discuss the nine layers one at a time. The first five layers, from the Real World to 
the Project World, deal with the abstraction of real world facts, and are not modeled in 
software. The final four layers, from Points to Feature Collections, deal with 
mathematical and symbolic models of the world and are meant to be modeled in 
software. Even so, this Essential Model of the final four layers assumes that they are real-
world objects, and gives no specification, however abstract, for their implementation. The 
final layer is the abstraction of reality specified in the language an information – the 
geometric and semantic description of a set of features or Feature Collection. 

2.3. The Real World 
By “The Real World” we mean the collection of all facts, whether they are known by 
mankind or not. Facts in the real world are understood in terms of their essence. For 
example, a tree is something that belongs to the category of things that have “treeness.”  
Figure 2-3  is meant to represent the Real World.  The cloud-like texture that occupies 
most of the figure represents the wilderness of unknown facts that occupy the chaos of 
the universe. Only a few of these facts are recognized as familiar patterns, and some of 
these are represented in the drawing.  
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Figure 2-3: The Real World 

Figure 2-4 is an abstraction of Figure 2-3, using the Syntropy notation of [Cook94].  An 
object type is represented by a rectangle, with a name at the top of the rectangle. 

 

Real World

Figure 2-4: The Real World Object Type 

Figure 2-4 is an essential model in the sense of [Cook94], that is, it is intended to help 
understand a situation. The situation is the first step toward abstracting a part of the real 
world into feature collections. Along the way, we will refine the concept of a Information 
Community for geospatial feature collections. 

Human discourse does not take place at the Real World level. Instead, humans give 
names to things (abstract them) and communicate with each other using these names. 
This naming process is exactly the method by which one interfaces to the next level of 
abstraction: the name method. The names are the proper and common nouns and 
pronouns of our natural language, and they are the language of the Conceptual World. 

2.4. The Conceptual World 
The conceptual world is the world of our natural language. We see and recognize the 
things we can name, and this set of facts is often called the Universe of Discourse. In 
Figure 2-5, which represents the Conceptual World, the clouds representing the chaos of 
the universe are not present because this chaos is usually invisible in the context of our 
natural language. Instead, the drawing shows things we can easily identify: doors, paths, 
bricks, a roof, the house of a friend, and so forth. The method by which we interface back 
to the Real World is the extraction of the essence of a fact. We call this the pith of the 
fact. Because we give names to things that we know, and can sense the essence of these 
same known things, we call the interface between the Real World and the Conceptual 
World the Epistemic Interface. 
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Figure 2-5: The Conceptual World 

The Conceptual World of our natural language is not sufficiently abstract for information 
modeling of geospatial features. In most Geospatial Technology Systems, only a 
simplified subset of the Conceptual World is of interest. This subset is called the 
Geospatial World. The method by which one interfaces to the Conceptual World is select.  

 

Geospatial
 World

Real World Conceptual World
namepith embed

select  
Figure 2-6: Associations between the Real World and the Geospatial World 

In Figure 2-6 there are three object types, each represented by a rectangle, and each with 
a name at the top. Lines between the rectangles represent associations between objects, 
and each of these carries a role name at each end to explain the association. The diamond 
represents aggregation; for example, the existence of the Conceptual World depends on 
the existence of the Real World. The solid circle means there is a set (instead of a single 
object) at that end of the association. For example, each Conceptual World embeds a set 
of distinct Geospatial Worlds. 

2.5. The Geospatial World 
Practitioners of geospatial technology are used to thinking of the world in an abstraction 
that is almost cartoon in character. This is because the world, even at the conceptual 
level, is too full of complex shapes, patterns, details, and change to model realistically. 
These complexities are eliminated in the Geospatial World, and replaced with 
abstractions that are usually temporally and spatially static as well. Please note, however, 
that an increasing number of applications are utilizing dynamic abstractions. 

Our little slice of the universe is redrawn at the Geospatial World level in cartoon fashion 
in Figure 2-7. Notice that some features have vanished and others have become greatly 
simplified. For example, some windows, walls, and roofs of buildings have vanished. 
This is because they are not of interest to the information communities geospatial view of 
the world. They have become “invisible” to the community. Of course, there is no 
universal definition of exactly what features are of interest to a given community, and 
perhaps sometimes a roof may be of interest. The cartoon merely indicates that the 
Geospatial World is a subset and a simplification of the Conceptual World.  
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The language spoken in the Geospatial World is that of the “Geospatial Discipline.” 

In our example, the footprints of the houses remain, even that part of the footprint that 
was hidden behind another feature in a particular conceptual view. That is, from a typical 
GIS point of view, the full footprint of a building is “seen”, even when some of it is not 
in view. Each geospatial technology implementation has rules that specify what features 
are recognized in its Geospatial World, and how they are simplified from the Conceptual 
World. For example, there may be a rule that a brick house is simplified to a 3-
dimensional polyhedron, while a house with another surface material is simplified to its 
footprint polygon.  Similarly, facts that were not visible (but which were a part of the 
conceptual model) in the Conceptual World view become obvious in the Geospatial 
World, such as the street centerline and property boundaries, because these facts are of 
special interest within the GIS discipline.  

 

Figure 2-7: The Geospatial World 

The interface between the Conceptual World and the Geospatial World is called the 
Geospatial Discipline Interface. The method on this interface from the Conceptual World 
is called select. To traverse this interface in from the Geospatial World to the Conceptual 
World, one may invoke the method embed. The embed method places an item of domain 
interest into its proper context in the conceptual world. 

The features recognized within the Geospatial World usually have a native 
dimensionality: 0, 1, 2, or 3, depending on whether they are seen as points, lines, 
surfaces, or solids. They have additional metrics in terms of their binary topological 
relationships (such as containment, adjacency, or distance apart.)  The next level of 
abstraction recognizes the native dimensionality and metrics of the features in a 
Geospatial World, and is called the Dimensional World. The method by which the 
metrics are acquired is called instrument. Note that instrument is performed in a 
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Euclidean metric space that is assumed to exist (at least locally) throughout the 
Geospatial World. 

2.6. The Dimensional World 
The Dimensional World is an abstraction of the Geospatial World where we become 
equipped with measuring tools such as tape measure, theodolites, GPS, and/or compass. 
The facts that are recognized at this level of abstraction include unary relations (such as 
length of an arc, and bearing of a horizontal line) and binary relations (such as distance 
between two points, buffer zone, and the “contains” relation) that are abstractions of the 
features themselves. Other examples include North, overlap, touch, dimensionality, 
intersect, and so forth.  
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Figure 2-8: The Dimensional World 

The method by which the Dimensional World interfaces to the Geospatial World is called 
fit.   A distance between two telephone poles is a fact that belongs to the Dimensional 
World. A wire of this length fits the span between them as seen in the Geospatial World. 
We include in Figure 2-8 some of the abstractions that are present in the Dimensional 
World.  

The Dimensional World is the last of the “generic geospatial” abstractions of the Real 
World. The next abstraction is called a Domain World (some authors use the term 
“World View” with a similar meaning) that occurs only in the context of an actual 
domain implementation. Each implementation is specific to a particular discipline or sub-
discipline (or a combination of a few of them). In each actual implementation, only a 
subset of the Dimensional World is recognized. Often, the subset is determined by map 
neat lines and by the particular phenomena that have been instrumented.  

In addition to the elimination of all but the features of specific interest to the particular 
domain (discipline or disciplines), there is another abstraction at the Project World level:  
we introduce the notion of a project-wide Coordinate Reference System (CRS). The most 
common CRS establish a coordinate structure around the abstraction we call the Earth’s 
surface, but there are other indirect reference methods, such as the use of a linear 
reference technique to identify points with a single parameter (e.g., highway mileposts). 
Whatever the method, we shall insist that all the coordinates that define the geometry of 
the features abstracted into the Project World carry an abstraction that can be defined by 
the Coordinate Reference System abide by the coordinate system framework. Hence, 
coordinates are defined to be a collection of points sufficient for the geometric 
construction of the geospatial extent of any feature of interest. For the purposes of this 
document, he term “coordinate” is meant to be generic; it includes “poles” (for spline 
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construction), “knots” (for NURB construction), “center” (for circle construction), and so 
forth. 

The interface between the Dimensional World and the Project World is called the 
Community Interface. The method for invoking the Community Interface from a feature 
in the Dimensional World is called codify, and results in a coordinate system being 
invoked in terms of which all the features’ corners can be abstracted as an n-tuple (n is 
usually 2 or 3) or into an equivalent abstraction. Conversely, a feature with known 
coordinates in the Project World can invoke the localize interface to result in the feature’s 
proper placement relative to other features in the Dimensional World, and with 
appropriate measurements. 

2.7. The Project World (or The “World View”) 
2.7.1. Introduction to the Modeling of Geospatial Features 

There are three popular approaches for the modeling of geospatial features.  

The first models the spatial extent of a feature with point, lines, polygons, and other 
geometric primitives that come from a list of well-known types. Features modeled in this 
fashion are called “Features with Geometry.” 

The second approach is called a “Feature as Coverage”. This technology includes images 
as a special case.   

The third approach is “Feature as Observation”.  An Observation is an action with a result 
which has a value describing some phenomenon. The observation is modelled as a 
Feature within the context of the General Feature Model [ISO 19101, ISO 19109]. An 
observation feature binds a result to a feature of interest, upon which the observation was 
made. The observed property is a property of the feature of interest.  

All these primary Features types are intimately related, yet have distinct concepts 

This specification will complete the nine layers of abstraction for the case of Features 
with Geometry. The notion of Coverages is introduced and compared to Features with 
Geometry in Section 2.13.  

2.7.2. Introduction to the Project World from the “Feature With Geometry” Point of View 
The use requirements of geospatial content for an information community always reflect 
the specific discipline or disciplines of their owners. Examples of geospatial disciplines 
in which geospatial abstractions are frequently found include forest management, soil 
mapping, cadastre management, base cartography, surface hydrology, wetlands, 
transportation modeling, and so forth. Each of these disciplines has many sub-disciplines, 
and an information community can involve any combination of these. 

It is exactly the multiplicity of languages at the Project World level that leads to the most 
difficult problems in interoperability between geospatial information stores. This is the 
source of much of the splintering that artificially divides the Geospatial World. The 
situation is manageable, however, if sufficient care is taken in the formalization of the 
language constructs. We will see that each Geospatial Information Community is 
intimately related to an equivalence class in the set of all possible Project Worlds under a 
special relation.  

Let’s look at three different Project World views of our slice of the universe. They are 
shown in Figure 2-9. They reflect the views of a cartographer, a cadastre manager, and a 
pavement manager, respectively. (A cadastre is a collection of parcel ownership and 
parcel extent records.)  Notice that each Geospatial Information Community sees an 
abstraction of a particular subset of the whole Geospatial World. 
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Figure 2-9: The Project World, or The World View 

Using the Syntropy notation, the associations from the Geospatial World to the Project 
World are represented in Figure 2-10. 

 

Geospatial
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Project World
or World View

Dimensional
World

insturment
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localize

 
Figure 2-10: Navigation between the Geospatial World and the Project World. 

To give the next four levels of abstraction sufficient rigor for unambiguous representation 
in software, we insist on imposing a great deal of structure upon the language of the 
Project World (which we call the Information Community Language.)  It is through these 
structures that individuals certify that they are observing common phenomena, and have 
abstracted the Real World in a repeatable way.  Specifically, we impose nine formal and 
rigorous structures: Feature Instances, Geometry, Coordinates, Geometry Schema, 
Coordinate Reference System, Feature Types, Attribute-Value Pairs, Attribute Schema, 
and Project Schema. All of these are to be understood as real world facts, not to be 
modeled in software at this level of abstraction. We forbid all language that lies outside 
these structures. Because all nine structures are essential for information sharing, we will 
discuss each of them, one at a time. 

2.7.3. Project World Feature Instances 
The primary structure we impose on the Project World in that of the feature. The Project 
World is completely defined by the instances of the phenomena it recognizes: features. 
This specification is intended to enable the geospatial engineer to conceptualize and 
model features in a manner appropriate to the task at hand, and does prejudice the 
engineer with predefined thematic classes.  This specification is standardizing geometric 
classes, but does not assume that two engineers will apply them identically to model the 
same information. 

The next eight structures are, for the most part, substructures of the feature structure. We 
insist that the notion of a feature be completely definitive in a Project World. We demand 
that our conceptual model of the Project World explicitly recognize any hierarchical, 
network, geometric, topological or other relationship between the phenomena recognized 
as features, and hold them as features themselves or as attributes of features. Examples of 
such relations are “is stacked on” and “is a part of.”  
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The features of the Project World carry less, but more structured, information than was 
held at the Geospatial World level, through the process of abstraction and simplification. 
To make the Project World definitive, we demand that the rules for the inclusion of 
features from the Geospatial World into the Project World be explicit. Such rules are 
often called “capture criteria,” or “instance conditions.”  Each instance of a feature in the 
Project World fits a category in the capture criteria.  

2.7.4. Project World Feature Types  
The categories of features captured in a Project World are feature types.  Each feature 
type can be thought of as a “template” to be populated at each occasion of a feature 
instance corresponding to that type. The template is populated with information specific 
to the feature instance. More details are at Section 2.7.8. 

2.7.5. Project World Geometry 
The feature of the Project World is a simplification and abstraction of the cartoon 
information carried in the Geospatial World. We recommend that features with spatial 
extent in the Project World be conceptualized using simple primitive geometric shapes. 
For interoperability, we recommend that the primitive shapes be instances of the Well-
Known-Types (WKTs) of geometry, such as polygons, line strings, polyhedrons, and 
other shapes.  The current enumeration of geometry types can be found in the OGC 
Abstract Specification Topic Volume 5 (also ISO 19107 – Features). We call instances of 
WKTs Well-Known-Structures (WKSs). We further demand that rules for representing 
each feature type with WKTs is explicit (for example, a rule may specify that a brick 
house is seen as a polyhedron.)  Finally, we demand that the conceptual model of the 
WKSs carries sufficient information to enable the reconstruction of the extents of the 
features to which they contribute. That is, we insist that the geometry components 
“know” how they contribute to complex geometries (for example, the highway segment 
geometries must know the sequence in which they concatenate to become an entire 
highway feature.  

2.7.6. Project World Envelope 
The primitive spatial concept in a Project World, from which all phenomena with spatial 
extent are spatially conceptualized, is “envelope”.  An envelope is a geometric primitive 
that (directly or indirectly through a geometric construct, such as a spline) defines (in 
whole or in part) the spatial extent of one or more of the phenomena recognized within 
the Project World. 

Each OGC WKS can be constructed from a finite set of points that are its corners. We 
strongly recommend that the corners of an envelope be explicit in the Project World. We 
further demand that the model for the envelope carries sufficient information to allow for 
the construction of the WKSs. For example, we recommend that the sequencing of 
envelope along a polyline is explicitly available within the Project World.  

2.7.7. Project World Geometry Schema 
The collection of rules implicit in sections 2.7.5 and 2.7.6 are called the geometry schema 
of the Project World. Examples include: 

• for each feature type, the geometry WKTs that are to be used in its representation 

• for each WKS, the feature instances to which it contributes 

• for each feature instance, the WKSs that contribute to its extent 

• for each WKS, the structured list of corners which specify it 

• for each corner of an envelope, the WKSs to which it contributes 

2.7.8. Coordinate reference System 
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We introduced the notion of a Coordinate reference System at the end of Section 2.6. 
Here, as there, we are treating a Coordinate reference System as a real world fact. A good 
example is a well-monumented point-of-beginning used by a surveyor. The point-of-
beginning, together with the tools and rules for surveying, enable one to attach 
coordinates to every point of interest in a project.  The points of interest are precisely the 
coordinates needed for the geometric construction of the geospatial extent of any feature 
recognized by the project. 

Because the introduction of a Coordinate reference System is central to the notion of a 
project world, the methods for traversing the Community Interface between the 
Dimensional World and the Project World are named for the actions relating to it. 
Invoking the method codify causes points in the Dimensional World to obtain their 
Coordinate reference System coordinates or parameters. Invoking the method localize 
removes the coordinates and recovers points in correct relative positions. 

A detailed model for Spatial Referencing by Coordinates can be found in ISO 19111, 
OGC Abstract Specification Topic Volume 2. 

2.7.9. Project World Attribute-Value Pairs 
Section 2.7.3 began by insisting that the Project World recognize only features. This 
section puts additional structure on the concept of feature. We are going to replace our 
rich and complex natural language descriptions of features with an abstracted stick-figure 
language of attribute-value pairs. 

So far, each Project World feature is associated with two structures: the feature type of 
which it is an instance, and the geometry consisting of an OGC WKS. The geometry is 
expressed relative to a Coordinate Reference Systems, and includes all coordinates 
needed for its construction. We now additionally insist that each feature instance be 
described using a strict grammar and vocabulary. The purpose of the grammar and 
vocabulary is to unambiguously and in a repeatable manner describe the attributes of 
interest for each feature within the Project World.  

In the Project World, each feature type is associated with a list of attributes. Our grammar 
demands that each attribute in the list have a formal attribute name, and that each 
attribute take a value of a type specific for that attribute. A sample grammar for feature 
types is shown by the sample template in Figure 2-11.  
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Figure 2-11: Template for [AttributeName /Value Type] Pairs for Feature Type: RoadSegment 

 

Our vocabulary, therefore, is quite limited. We are allowed only the following terms: 

1. the names of the feature types recognized by the Project World 

2. attribute names 

3. attribute values.  

Of course, each of these terms can be used only where our grammar permits. 

Every feature may publish a unique, persistent. Most feature types have an attribute that 
can take geometry values. This is the attribute whose value is the WKS that models the 
physical extent of a feature instance of this type.  Relationships between features may not 
be carried as an attribute-value pair, but must use the facilities described in Topic 8: 
Relationships Between Features. 

2.7.10. Project World Attribute Schema and Feature Schema 
The collection of all feature types recognized by a Project World (including the capture 
criterion for that feature type) together with the list of Attribute/ValueType pairs for each 
one, is the attribute schema of that Project World. 
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Figure 2-12: Another look at the Project World  

The attribute and geometry schemas constitute the feature schema of the Project World. 
See Figure 2-12. 

Figure 2-12 is a refinement of Figure 2-9. It explicitly includes the feature schema as a 
part of the Project World. 

The table of attribute-value pairs in a Project World, and more importantly, the semantics 
behind its terms, reflects the interests of the scientists who conceptualize and formalize it. 
We insist that the schema be extremely formal, so that all the individuals participating in 
a Project World observe the same phenomena, and record them in exactly the same way. 
This rigor mandates that the attribute schema must be completely specific about the 
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names and meanings of its attributes, as well as the meaning (to include types and units) 
of its values.  

This implies the existence of a dictionary in each Project World where the semantics of 
the terms in the vocabulary are made clear. The semantics are usually explained in a 
natural language, with many examples, and have many more dimensions than indicated in 
this paper. The semantics include aspects of: feature definition, classification 
discriminators, accuracy, sources, methods, intended uses, and so forth.  

2.7.11. Project Schema 
The OGC is, to a large extent, about enabling commerce in geospatial information and 
process. We make the basic assumption that an important unit of trade in this commerce 
is a feature collection. Each distinct and unique feature collection, therefore, needs to 
carry enough meta-information to allow the feature information it carries to be 
understood and exploited. We hinted at some of this meta-information when we spoke of 
a dictionary for the Project World vocabulary, but there is more. The Project Schema is 
the formalization of this meta-information, and it is best defined in the Project World 
context. Figure 2-13 shows the relationships between a feature collection, its features, 
and the meta-information needed for commerce. The shaded object types denote 
information that supports the modeling of feature instances within the feature collection. 
The white object types all hold meta-information of some kind. The white objects, 
collectively, are termed metadata. We have already introduced the Feature Schema; it is 
simply the union of the Geometry Schema (See Section 2.7.7) and the Attribute Schema 
(See Section 2.7.10). 

Figure 2-13: The Role of the Project Schema in a Feature Collection 
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The Project Schema consists of four parts:  

1. Feature Collection Identification 

2. Lexical Semantics 

3. Project Semantics 

4. Use Semantics. 

We will briefly explain each of these objects, below.  

The Feature Collection Identification is a simplified selection from the Project Semantics 
that is designed to be queryable. For now, it suffices to say that this object provides a 
unique identifier to the Feature Collection, and provides a high-level description of it:  

Where:  the region of the Earth covered 

What:   the approximate scale, the thematic key words 

Who: the responsible agent, instructions for access to the Feature Collection 

When: the date the data was created and the date of its sources 

How: the method to acquire the feature data 

Why: the intended use 

We will see that the Feature Collection Identification (metadata) is used to support 
discovery. Since the Feature Collection Identification often plays a role that makes it 
seem to be intimately connected to the Feature Collection itself, we show a derived 
relationship between these two object types. 

Lexical Semantics are basically the dictionary of terms used in the attribute schema. The 
Lexical Semantics must provide sufficiently rich definitions and enough examples that 
there be no ambiguity concerning the proper schema for each feature instance. 

Project Semantics describe how the Project World was conceptualized, and how the 
Feature Collection was generated. Included here is the physical extent of the project, such 
as the map neatlines, or the region imaged from a space platform. 

Use Semantics provide details on how to exploit the feature collection. Included are the 
intended uses for the information as it was collected, any indices that improve access to 
the information,  

Figure 2-14 is a last look at our slice of the universe in conceptual and literal terms. 
Further abstractions will be symbolic and mathematical representations. 
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Figure 2-14: A Final Look at the Project World and Its Fundamental Schema 

We now have the tools with which to define a Geospatial Information Community. But 
first let us complete the process of abstracting to features and feature collections. 

2.8. The Point World 
Each Project World has a project-wide coordinate reference system. With the coordinate 
reference system, we are able to interface to the next level of abstraction: the Point 
World. The Point World is perhaps best imagined as Cartesian space populated with a 
finite collection of special points. Starting from any coordinate of any feature in the 
Project World, we assume a method named survey that abstracts the coordinates of the 
corner to arrive at a special point in the Point World. Conversely, for each special point in 
the Point World we assume a method named locate that locates that point as a coordinate 
of a feature in the Project World. Of course, the survey and locate methods work for 
points other than the feature coordinates, but to recognize these additional points, one 
must enlarge the schema and allow new phenomena to be recognized. 
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Figure 2-15: Point World 

Figure 2-15 represents the situation. There are three Point Worlds represented: one each 
for cartography, cadastre, and pavement management. Each Point World consists of a 
coordinate reference system together with a finite set of points (which are at the 
coordinates of geometries representing features of interest to those three specialties.) 
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Figure 2-16: The Abstraction of Points from the Project World 

Using the notation of [Cook94], the situation is represented in Figure 2-16, where an 
attribute of an association is shown attached to the association line with an oval. The 
association of a coordinate in the Project World to a coordinate pair (or n-tuple) in the 
Point World has an attribute called the Coordinate Reference System. Perhaps more 
properly, there is an association type that specifies the structure of the association with 
additional information, including the horizontal and vertical datums. (A horizontal datum, 
in this setting, may be taken to be an unambiguous assignment of longitude and latitude 
values to real world locations in a manner that agrees with observations of lengths and 
angles. A vertical datum similarly assigns elevations to locations.) 

2.9. The Geometry World 
The careful reader noticed that Figure 2-15 contained more than isolated points and 
coordinate axes. There are also dotted lines that carry the “memory” of how the points are 
assigned to specific coordinates of more complex geometry, and combine to recover the 
geometry components from which the features are to be modeled. The dotted lines did 
not actually belong in Figure 2-15, because they are not a part of the Point World.  

The function of the OGC Geometry World is to recover from earlier abstractions the 
information needed to construct the OGC Geometry WKTs that model the Project World.  

 

The OpenGIS® Abstract Specification  Page 18 
Volume 5: Topic 5: Features 



 

 

Figure 2-17: The OGC Geometry World 

Figure 2-17 shows some representations of the Geometry World, which is populated with 
points, polygons, polyhedra, and so forth, all in the context of an abstract coordinate 
system. 

The role of the geometry schema is shown more explicitly in Figure 2-18. Here we see 
that the association between the Point World and the Geometry World is actually a 
derived association (as indicated by the diagonal line on the association line.)  The 
navigation path from Points to Geometries is through the geometry schema captured in 
the Project World abstraction. 

Figure 2-18: Navigation From Points to Geometry 

The Geometry Schema Interface lies between the Project World and the Geometry 
World. To traverse the interface from the Project world, one invokes the skeletonize 
method to create the OGC WKS equivalent to any recognized geometry in the Project 
World. Traversing the interface in the reverse direction is invoked by the enclose method, 
whereby an OGC WKS is replaced with the cartoon outline of the actual phenomenon 
represented by that WKS. The interface between the Point World and the OGC Geometry 
World is invoked by the decompose and assemble methods, which are defined by the 
paths through the Project World.  
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We also show a derived association between the Coordinate Reference System and the 
Geometry Schema. This is to indicate that the Coordinate Reference System often seems 
to behave as if it operates on complete geometries, and not just on coordinates. 

In Figure 2-18 we used the geometry schema to build the Geometry. Next, we will use 
the attribute schema to build Features. 

2.10. The Feature World 
At the level of an Essential Model, each Feature type is specified by its attribute set. An 
attribute set is a list of attribute/value pairs that is applied to all features of the 
corresponding type. Every feature instance in the Project World belongs to the one of the 
recognized types. The type specifies the list of attributes that distinguish the feature, as 
specified by the Attribute Schema. Most geospatial features have an attribute called 
“Geometry,” (or, “[FeatureTypeName]Geometry”) and, if so, its value must be the OGC 
WKS that was conceptualized in the Geometry Schema. Figure 2-19 is a representation of 
the situation.  
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Figure 2-19: The Feature View 

Figure 2-19 shows a typical feature in each of the cartographic, cadastre, and pavement 
management domains. These features did not suddenly come to exist for the first time in 
the Feature World. The features are the same ones formulated in the Project World. There 
are two chief components to an feature: its attribute schema, and its geometry. Figure 
2-20 shows how the two components of the feature come together. 
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Figure 2-20: Navigation Near a Feature 

Notice that the association between Geometry and Feature has no slanted line on it. This 
is in recognition that this is not a derived association, but rather the primary navigation 
path for geometry. The path from the Project World to the Feature does not carry 
geometry, but it does carry all the rest of the Feature Schema.  

The interface between the Geometry World and the Feature World is the Feature 
Structure Interface. It is traversed by the extent and geometry-value (or geo-value, for 
short) methods. These methods are clear: the extent of a feature is the space it occupies, 
and this is modeled by an OGC WKS. Likewise, every feature with extent has an 
attribute named geometry, whose value (that is, the geo-value) comes from the Geometry 
World. 

The interface between the Project World and the Feature World is called the Attribute 
Schema Interface. It is traversed by transparent methods named attribute and instance. 

There are two new object types in Figure 2-20: Attribute and Attribute Reference System. 
By “Attribute” we mean a (AttributeName, ValueType) pair, as defined in Section 2.7.9, 
and as spelled out in the Attribute Schema. The Attribute Reference System is 
(sometimes) needed to give meaning to the attribute value.  For example, a feature may 
be a temperature coverage defined by a triangulated irregular network (TIN) from a finite 
number of temperature samples. The mechanics of returning a temperature at a specified 
point (a coordinate perhaps not in the finite set of coordinates with temperatures) is 
accomplished by the Attribute Reference System.  

Refer also to Appendix B. The ISO TC211 General Feature Model for a similar 
representation of features, their attributes, functions and relationships. 

2.10.1. Feature Collections 
An Feature Collection is an abstract object consisting of Feature Instances, their Feature 
Schema, and Project Schema. Figure 2-21 shows Feature Collections in a Syntropy 
diagram. 
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Figure 2-21 Navigation Near the Feature Collection World 

Feature Schema are the key to Feature Collections. 
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Figure 2-21 can be simplified by collapsing the Geometry Schema and the Attribute 
Schema into the Feature Schema.  Doing this yields Figure 2-22. 
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Figure 2-22 Feature Collections Consist of Features, their Feature Schema, and a Project Schema 

2.10.2. Interfaces on Feature Collections 
The interface between the Feature Collection World and the Feature World is called the 
Project Structure Interface.  This interface is transparent, but it is derived from paths 
through the Project World.  This is because the members of the Feature Collection World 
correspond directly to phenomenon in the Project World, not to a feature in the Feature 
World.  Nevertheless, the methods across the Project Structure Interface, called member 
and include, are obvious. 

The interface between the Feature Collection World and the Project World is called the 
Project Schema Interface.  Its methods are also obvious, and are called realize and 
represent. 

2.10.3. Background Notes on Feature Collections 
The Open GIS Consortium has not yet achieved consensus on many issues surrounding 
Feature Collections. On the one hand, perhaps Feature Collections are not needed at all. 
This is because: 

• a feature can be a composite of other features, connected by relationships of a 
particular type (see Topic 8) 

• a “tile” may be a feature composed of (related to) the features it contains 

• a feature may have one of its geometry values “divided” by tile boundaries, and thus 
be split into one feature with two geometry values or two features each with part of 
the geometry, yet need to be “reassembled” on demand by an interface on Feature or 
by a service. 

On the other hand, the real world seems full of Feature Collections that need to be 
addressed. These include: 

• projects, which have assignment boundaries and feature capture criteria and 
thresholds 

• products from Government agencies, such as VPF, ADRG, SDTS, ATKIS, and 
similar files 

• GIS database files 

• the persistent or non-persistent ad hoc collection of features present at any moment 
in a GIS workspace. 
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Feature Collections seem to need important interfaces in order to support the needs of 
Catalogs and Catalog Services. These interfaces seem to be tightly coupled with Feature 
Collection Metadata. Formal definition of feature identifier scope is required, and every 
scope implicitly has an association with the collection of features whose identifiers it can 
resolve. 

2.11. Summary of the Nine Layer Model 
As a summary of the preceding sections, and as a reformulation of Figure 2-2, we present 
Figure 2-23. 
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Using the notation of [1], we present Figure 2-23. 
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Figure 2-24  The Object Types of the Nine Layer Model 

2.12. An Alternative Perspective to the Nine Layer Model 
Figure 2-25 presents an alternative view of the various ways of defining multiple worlds, 
but from a language perspective. This view is equally valid but different. In particular, 
the nine-layer model implies that the essence of all features is tied up in their spatial 
extents (they are all drawn from a ‘Project World’ which is a ‘codification’ of the 
‘Dimensional World’). However, we define features to be able to have many spatial 
extents - or none - and where the spatial extent of the feature may be of less importance 
than its relationships to other features (see Topic 8). 
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Figure 2-25   Conceptual Model of the ‘Real World’ modelling process 

2.13. Persistent Feature Identifiers 
2.13.1. Problem Statement 

Managers of complex geographic information systems require capabilities for 
incremental update, distributed update, copying and partially modifying data. These 
capabilities require a more careful examination of the issue of feature identity than has 
previously been achieved. 

Identity has implementation, logical, syntactic and philosophical aspects. A complete 
analysis is not attempted here. 

Some handling of feature identifiers is necessary in order to represent relationships 
between features. This is discussed in Topic 8 of the Abstract Specification 

A troublesome issue in the community is the lack of ability to support value-added 
information in a cost-effective manner [Hair97]. Value added information is an extension 
of a primary database which needs persistent feature identifiers in order to allow: 

• additional information to a base dataset is  required for a one-off or transient 
application 

• a base of information exists but there is a long term need for additional information 
that has not been captured in the past 

formation 
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• partnerships are established based on areas of expertise but sharing some common 
data, e.g. between telecommunications and electricity utility companies  

• partnerships are established based on areas of expertise but sharing some common 
data, e.g. between telecommunications and electricity utility companies  

• incremental updating and incremental publishing • incremental updating and incremental publishing 

• maintenance of complex or aggregate objects (currently using relationships, see 
Topic 8). 

• maintenance of complex or aggregate objects (currently using relationships, see 
Topic 8). 
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• Reference to a geographic feature within a repository from outside the repository and 
perhaps outside any computing system, e.g. as a string of text in a hand-written 
letter. 

We also need persistent, immutable feature identifiers in order to support: 

• Tracking of feature identity during updates and collaborative working 

• Proper management of versions  

• Lineages of data transformations 

The differences between geographic feature identifiers and many other types of persistent 
identifiers are of scope and scale. A single geospatial data repository may contain 
hundreds of millions of features. CORBA Persistent Object Identifiers are intended to 
identify executing software objects in much smaller numbers. Similarly, the IETF 
Unified Resource Names are designed for smaller numbers of objects. However, the 
design of IETF URNs may be appropriate for geographic features even if current 
implementations of identifier resolvers may not be [URNDNS]. 

2.14. Resolving Scoped Feature Identifiers  
2.14.1. Fundamental Ideas 

Every feature has one feature identifier (name) within its immediate scope (namespace). 

A feature identifier is persistent and immutable. 

A namespace, a "Scope", in which an identifier can be resolved, is itself a software object 
and does itself require a permanent identifier. 

Scopes can be nested, but do not form a strict tree: a directed acyclic graph (DAG) is 
possible. 

At the "bottom" are the leaf-objects, which are explicit identifiers which do not then need 
resolving in any other scope. 

At the "top" we need to have some "Well Known Scopes" written into the 
implementation specification. 

Leaf objects can be feature identifiers, scope identifiers, or any other type of identifier. 
We just deal with feature and scope identifiers here. Note that we only deal with 
identifiers. 

Using a fully-resolved "bottom" leaf feature identifier to actually retrieve a feature's data 
is access not resolution and is a different issue. 

2.14.2. Key concept  
Scope is a permanent object with a persistent, immutable name that allows it to be located 
indefinitely, which can answer queries about identifiers "in its scope": resolving them to 
more explicit identifiers. 

Finding a "scope object" is thus necessary. CORBA POAs and IETF URNs would be 
appropriate for the identifiers of scope objects. 

2.14.3. Key supporting concept 
Any scoped identifier (simply called an "identifier" or "name") is conceptually and 
perhaps actually constructed in two parts: 

• A suffix, which may be opaque or may be an identifier in some grammar.  
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• A prefix, which defines the scope in which the suffix has meaning.  

There is also always a third, invisible, part: the scope in which the whole thing, prefix 
and suffix, should be interpreted. This is because an identifier is always "inside" a scope. 

2.14.4. Principles  
Longevity, delegation and independence [URNres]. 
Identifiers must be persistent (last a long time) 
It must be possible to delegate both authority and responsibility for both naming and 

resolution 
The various delegations must be capable of being independent of one another 
There are three aspects to naming: identification, location and mnemonics (semantics) 

[URIres]. 
The resolution system must be separate from the way identifiers are assigned 

[URNDNS]. This separation allows multiple naming approaches and resolution 
approaches to interact and to compete. 

These identifiers are generally distinct from Human Readable Names (HRNs). However, 
a Scope can be defined in which identifiers are Human Readable, and then HRNs can 
be resolved in the same way as any other scoped identifier. 

We need to be able to "grandfather in" existing naming schemes and Scopes [URNDNS]. 
Resolver services must be able to support scaling in three dimensions: number of 

features, number of data publishers, and complexity of delegation [URIres] 
"One cannot make global, systemic guarantees except at an expense beyond reason." 

[URIres]. 

Scoped Identifier 

Resolution request 

Identifier  

Enclosing scope 

Sub-scope 

Resolution result 

 

Figure 2-26. Resolution of a scoped identifier in a scope yielding an identifier inside an enclosed 
scope. 
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2.14.5. Resolver Services  
Resolvers and similar systems can offer several services. The following list is taken from 
IETF work which use the term "name" for "identifier", "namespace" for "scope", and 
"characteristics" for "metadata" [URNDNS]: 

N2L Given a name (identifier), return a location (URL) 

N2Ls Given a name (identifier), return a set of locations 
(URLs) 

N2R Given a name (identifier), return the feature 
("resource") itself 

N2Rs Given a name (identifier), return multiple instances 
of the feature ("resource") 

N2C Given a name (identifier), return its characteristics 
(metadata), e.g. a URC. Characteristics are always 
potentially a list (plural). 

N2Ns Given a name (identifier), return all the names that 
are identifiers for that feature 

N=N? Are these two names identifying the same feature? 

L2R Given a location (URL), return the feature 
("resource") 

L2Ns Given a location (URL), return the names that 
identify that location 

L2Ls Given a location (URL), return a list of locations 
that contain the same feature 

L2C Given a location (URL), return its characteristics 
(metadata), e.g. a URC.  

L=L? Are these two locations the same? 

R=R? Are these two features the same? (Assuming they 
have different names) 

Figure 2-27 Resolver Services 

Notes for Figure 2-27: 

• Using the above naming convention, "C2N" would be a metadata query, not a 
resolver query.  

• N2C, even at the "lowest" level scope,  is often all that can be achieved if the 
"resource" is off-line or in hard-copy form only. 

• For the purposes of feature identification, we need all scoped identifier resolvers to 
offer only the following service: the critical service N2Ns (which we expect usually 
to return a single new name in a "lower" scope). 

• For the purposes of feature identification, we need the "lowest" scoped identifier 
resolvers to offer only the following services: N2R, or N2Rs, and/or N2C as 
appropriate. 

• This list is not exhaustive and many more services can be envisaged. Rather than 
freeze the set of services as function calls in a standard Interface, it would be 
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preferable to set up an architecture whereby new services could be registered, 
discovered and advertised. This is the approach which will eventually be followed by 
IETF [URIres], but at present such an approach would be premature. 

2.14.6. Further Example 
"The Handle System®" from CNRI is an example of a 1-level scope system. An 
identifier looks like this: 

hdl://cnri.test/abcd/efg/ijk#123 

Where: 

• the suffix is: abcd/efg/ijk#123  

• the prefix is: hdl://cnri-test/  

• and the scope in which it makes sense as an identifier is The Handle System® which 
exists in within the Internet.  

The Handle System includes a large number of scopes, but all of them have “hdl://”as 
the first part of their prefix. 

2.14.7. Hints 
The above example illustrates another useful but non-essential characteristic: the invisible 
scope in which the identifier should be resolved is indicated in a non-formal way, a "hint" 
URNres] by the initial part of the text string of the prefix. Any informed person reading 
“hdl://” has a pretty good idea that we are dealing with a variety of URL (a URI to be 
pedantic [URI]) and we need to find which protocol “hdl:” represents. This capability 
is most use at the "top" level when we have to decide which Well Known Scope we have 
to start with. Lower scopes could be pure binary for prefixes and suffixes. 

Hints are much more general facility than simply being an interpretation on prefixes; they 
are "anything that helps in the resolution of an identifier" [URNres]. Hints may 
themselves have metadata attached to them and may be an intermediate step in the 
resolution of an identifier. However they are also only hints: they may be out of date, 
temporarily invalid etc. 

2.14.8. Well Known Scopes and URNs 
A Well Known Scope is a Scope Environment, e.g. X.500, Corba Locator Service, DNS 
(machine identifiers), URL (file identifiers if the location is permanent). 

Other Scope Environments might be: 

• a FeatureCollection  

• a database  

• a computer  

• a geodata repository service  

• a website  

• URNs 

These can be self-referential and mutually referential. Within any scope environment 
there will be many resolvers. Each environment will need to have the services of a 
Resolver Discovery Service (RDS) - but the RDS for one environment does not itself 
have to be hosted in that environment, e.g. an RDS for X.500 resolvers could run in the 
WWW environment. 
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2.14.9. Uniform Resource Names 
A URN always has the following syntax: 

urn:<NID>:<NSS> 

(i.e., urn:<namespace>:<suffixname-which-can-contain-colons> ) 

The standard names are NID and NSS: NID is the namespace identifier (scope identifier) 
and NSS is the namespace-specific string [URNres]. 

Thus the "invisible", third, enclosing scope for a URN is always visible because all URNs 
begin with the same literal string "urn:" 

NSSs are expected to be partitioned into delegated and subdelegated namespaces where 
the delegated namespaces are free to choose their own syntax for the variable part of the 
namespace [URNres]. 

URNs can have access controls applied to their resolution. 

If a scoped identifier is a Uniform Resource Name or URN [URN], there is a proposed 
mechanism already whereby resolvers for those names can be located using DNS 
[URNDNS] and HTTP [URNhttp] 

The "hint" to find a resolver can be encoded in a rewrite rule inside Domain Name 
Servers  [URNDNS]. Replicated repositories and resolvers can be supported by this 
means. 

URNs are a specific design of scopes which can be arranged in nested scopes in a 
directed acyclic graph. 

URNs need not include the more-resolved scoped identifiers lexically in the successive 
suffix parts (opaque or not), and they can support rewrite rules which enable automatic 
grammar-directed mapping between names (identifiers) in one namespace (scope) and 
another namespace. 

Every resolution of an identifier (name) occurs in URN resolvers, possibly even in the 
same resolver software running on the same machine, but the path of resolution can trace 
out a directed .acyclic graph. 

URNs already have had preliminary studies made on their security and privacy 
[URNres]. 

2.14.10. What resolution does  
An identifier is resolved by giving it to the Scope object in which it is defined (the 
invisible one), which (conceptually) strips off the prefix, finds the Scope object that the 
prefix names, and hands the suffix to that Scope object. When the process reaches a leaf 
identifier, the stack unwinds and the leaf identifier is returned together with whatever 
information is necessary for the original enquirer to make use of it. This is a sequence on 
N2N operations. 

2.14.11. Resolution, discovery and access 
For software specification it is best to keep orthogonal functions specified entirely 
separately as distinct interfaces. Any implementation may choose to support one or 
several interfaces. We have three quite separate specifications to think about: 

• Issuing or assigning scoped identifiers 

• Resolving scoped identifiers N2N 

• Discovering objects that match certain properties (catalog query using metadata) 
C2N 
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• Accessing data (data repository query), N2R 

Experience with these types of systems has produced a major principle: that the 
resolution system  must be separate from the way identifiers are assigned [URNDNS].  

2.14.12. Handles and descriptors 
We understand a feature descriptor to be something which is resolved by a Catalog 
Service. A feature descriptor contains "sufficiently unique metadata". 

This discussion of scoped identifiers covers what we previously called a feature handle. 

2.14.13. Permanent scope objects 
Anything could offer an identifier resolution service within an "understood" scope, but 
we need to ensure that scoped-identifiers are only issued containing scope object prefixes 
for scope objects with certain minimum required qualities of permanence and 
immutability. 

Catalog services are something which we could also cover by this same scoped identifier 
mechanism. 

2.14.14. Uniqueness of identifiers 

2.14.14.1. The same feature can be in several Scopes 
There does not seem to be any way to avoid this since anyone can set up an identifier 
resolution service which then defines its own new scope.  

Thus the same feature (a specific software representation of a real world object) can have 
several scoped identifiers. It will have the same leaf identifier (in the immediate scope of 
the feature), but this could appear in published form hidden inside several different 
scoped identifiers via different scopes. 

Thus we lose equality by value for published identifiers; however we can define an 
equality method on identifiers if the method resolves them down to the lowest common 
denominator scope. Because scopes form a DAG not a tree, and because identifier length 
does not tell you anything about how many prefixes may be hidden inside opaque 
suffixes, it is impossible to tell how far down this is until the resolution is actually 
performed. 

We need to make the following restriction: 

2.14.14.2. An identifier cannot be a leaf in more than one scope  
This is tricky, since data repositories can always be copied. So we need to think about 
how to define scopes for copies, and to consider replication possibilities to see if we can 
relax this condition under certain carefully-controlled circumstances. 

2.14.15. Uniqueness and equality 
The idea of equality is very specific to individual information communities. Often the 
same feature does require multiple names, even at the most fully-resolved level. The 
classic example is a weather map: 

• The map of 26 October 1998 

• Today's weather map 

Both are useful names, and at some time they may both point to the same resource 
[URIres]. A resolver may support equality of feature R2R as well as equality of fully-
resolved identifier N2N, but if it does it will do it in an opaque way. 

2.14.16. Internal identifiers and internal scopes 
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All identifiers discussed in this background description are published, external identifiers. 
Any repository can use any internal identification mechanism it likes so long as it can 
support permanent, immutable external identifiers.  

As an example, consider a system which uses 8-digit numbers as internal feature 
identifiers. Such as system might want to be able to represent foreign identifiers (e.g. to 
implement some feature-feature relationships) and it might do so by internally using 
identifiers of the form "9xxxxxxx". The initial "9" indicating an external identifier. Such 
a system would then have a bit of software in its export subsystem which published its 
own identifiers as scoped-identifiers and replaced the foreign identifiers with the original 
foreign scoped identifier (stored in some local registry). 

The interesting thing about this example is that the initial "9" can itself be considered to 
be a scope-prefix inside the proprietary system. This illustrates the general points that  

• a scope "inside" another scope can actually be "larger" than the containing scope, 
and that  

• a resolving service may only be able to cope with a subset of the identifiers which 
actually exist in a "sub"-scope.  

The important property of an identifier is that is resolvable, not that it is readable. 

2.14.17. Scope aliases 
Some scopes may exist only to provide short-forms of identifiers, e.g. in the above 
example a single digit "9" represented the entire outside world. A deeply-nested identifier 
could accumulate a very long string of prefixes, so within an organisation or information 
community, a scope resolver which provided short-form aliases could be useful. 

Scopes can cross-reference each other, thus the opaque part of an X.500 scope may be a 
URN which resolves to a Handle System identifier. 

2.14.18. Published identifiers 
Any identifier published, e.g. in an email or quoted by some other piece of general 
purpose software for any value-adding purpose, must quote scope prefixes all the way 
back to the most-global Well Known Scope. This is where it is particularly useful if the 
prefixes understood by Well Known Scopes are not opaque but are readable as "hints". 
The examples of  the hints  "hdl://" and "urn:" have already been mentioned. 

2.14.19. FeatureCollection 
Conceptually, there exists a FeatureCollection of all the features whose identifiers are in 
the Scope, but  

this FeatureCollection is not a Scope,  

neither is a Scope a FeatureCollection,  

they are just implicitly associated. The FeatureCollection may not be instantiatable even 
in theory for some Scopes. 

2.14.20. Methods of Feature Identity Scope 
A Scope Object has these methods: 

• Given an identifier, a scope object returns a sub-scope identifier and a sub-identifier. 
( "Traverse" method) N2N 

• Given two identifiers, a scope object resolves them to a common scope, obtains a 
canonical form, and then responds by saying whether they are equal or not. 
("IsEqual" method) N=N 
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• Given an identifier, determine if it is a leaf identifier in this scope N2R? 

• Given a leaf identifier, return the object. This is a repository service method, not a 
scope service. N2R 

• Given a leaf identifier which we are pretty sure is a feature, not some other kind of 
identifier, return us the feature [as a feature handle ?]. Again, this is a repository 
service method. N2R 

• We give it an object {handle?} and ask for a scoped-identifier in the current scope. 
R2N 

• We give it an object {handle?} and ask for a public, publishable scoped identifier 
that contains all the scopes out to a Well Known Scope. (The "ComposeId" method). 
R2N+!N2N 

This last method is arguably implementable because we always know where we are in the 
scope sequence because we must always have come "down" some route through the 
scopes' DAG to get to the scope we are "in" now. Being able to produce a publishable 
identifier is clearly a requirement, how it is done should be left to responses to an RFP. 

A Scope is probably an Interface not a Class, (using Java nomenclature), i.e. the set of 
Scope methods could be supported by many different objects of different classes. 

It has been provisionally decided that we do not want or need a method on Feature where 
you give it a scope and ask what its publishable identifier would be from that scope. 

2.15. Feature Identifier Change Registries: Incremental Publishing 
2.15.1. Conflict 

Incremental update requires permanent feature identifiers, but also intrinsically means 
that some identifiers will not be permanent because they will be deleted ("retired"). 

This conflict can be managed if designed properly. But we cannot suggest a solution 
which requires any kind of centralised international database. 

"In case that the source supports versioning, a registry of the relationship between the ID 
of the original version and that of subsequent ones should be maintained. [...] Case 4:... 
the client requires to be notified of any updates on the retrieved objects. A broadcast 
mechanism can be designed such that the source sends an update alert on the network." 
[Bishr99] 

"These references include such things as value-added attributes, additional feature 
relationships, etc. While it may be possible to resolve all of these references immediately 
in a small centralized database, it is intractable considering the number of geospatial 
databases and the volume of features currently in existence. Therefore, one must employ 
a technique that supports on-demand resolution of these references at any point in the 
future. This technique must also support tracing the lineage of a feature back in time 
through changes in delineation, or forward to the present from some historical date." 
[Hair97] 

We address those feature identifiers which would be used to manage incremental updates.  
These are almost certainly the same identifiers used to implement relationships (see 
Topic 8). Compound objects are assumed to be implemented using relationships. We 
assume a scope mechanism for resolution of scoped identifiers. 

2.15.2. Fundamental Ideas 
When we have permanent, immutable feature identifiers which are to be used by third-
party software, we must have some registry somewhere which records their replacements 
by updated identifiers. 
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Separating the specification of read-only access from update-editing simplifies things. 

Hierarchical decomposition across scopes in which identifiers are managed to be 
consistent is one good way to make identifier registries scalable and workable. 

Resolution and clean-up, across a local domain, should be done as often as is sensible in 
order to keep registries manageably small. 

2.15.3. New concept 
The concept of published- versus dirty-feature identifiers is introduced.  

This turns out to be sufficient. We do not need to specify the full semantics of a formal 
system to specify long-transaction or version control architectures. 

2.15.4. Incremental Publishing 
A key idea is that incremental publishing is what we want to achieve. We do not need at 
this time an all-singing, all-dancing global peer-to-peer transactional universal historical 
feature identifier monster. 

This section is structured like this: 

1. Incremental publishing requirement 

2. Distributed edit/update requirement 

3. Both together. 

We can start simply, with read-only incremental updates to read-only GIS clients.  

We then go on to consider a tight community which is collaboratively updating a GIS 
dataset, e.g. within a single cartography publisher's organisation. This has lower priority 
within OGC at this time. 

We then show that these two architectures can be composed in one specific way which 
works and has good global properties. There may be other ways of carefully composing 
these two architectures. 

2.15.5. Incremental Publishing 
With incremental publishing, there is a notional single master database, the "publisher" 
which periodically issues incremental updates. The clients have read-only copies of the 
data which they can use in various value-added ways [Arctur98]. The thing they do that is 
relevant to this discussion is that they create references to feature identifiers in other 
software, web-pages, other GIS packages etc.  

Example: a hydrographic agency distributes CD-ROMS of charts to pleasure-boat owners 
with daily "notices to mariners" broadcast using the GSM telephone short-message 
service. Some boat owners have add-on software which presents the data as a 3D 
visualisation and correlates it with on-shore harbour information purchased from a 
yachting club. 

Thus every feature identifier which is sent out from the master is published and the 
master takes responsibility for ensuring that it continues to be useful so long as clients 
follow some simple instructions and implement a local registry. 

Assume for the moment that the client only works within a closed group and no reference 
is made to the data except via the client, i.e. a strict tree. 

The client local registry contains an index of every feature identifier that the client has 
used in its value added activities. 

When an update packet arrives from the master, it contains the geodata update in some 
file format and a feature identifier registry update, probably in some XML encoding. This 
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says which identifiers are being split, merged and deleted [Arctur98]. (It probably lists all 
the new ids too.) If the client has used any of these IDs, it has responsibility for: 

1. either finding where they were used and replacing them,  

2. or since the client always services the geodata requests for its value-added activities, it 
can resolve outdated ids on-the-fly when it services the request.  

When we resolve updated identifiers we have a choice: 

1. replace all references to the old identifier with references to the new identifier, or 

2. if the GIS can handle it, add the new object, create a relationship between the old and 
new object, and update those references to the old object which require the "latest" copy 
but keep references to the old object if they are intended to point to that old object. 

The second option is one that often happens when there is a mixture of archive data 
which must be kept consistent, e.g. compound objects represented using relationships, 
and current data which must reflect the current configuration. Other software systems 
distinguish the two by defining this behaviour as an aspect of the relationship type, like 
cardinality or bidirectionality. 

2.15.6. Non-tree client network 
Now we relax the condition that access to the geodata is through a strict tree. This is more 
than we need at this point in OGC since our user-base wants controlled incremental 
publishing first. 

Any set of clients which are synchronized in their updates can use each others value-
added software because the feature ids will be identical. [All clients treat the geodata as 
read-only, remember.] 

Now consider that one of these clients has created some additional information about an 
object whose geodata is in the public domain. That client publishes a web-page 
containing feature identifier references. A reader of that web-page may not want to go to 
that client to get the public data, but wherever the reader goes to get it may not be 
synchronized so some identifiers will be meaningless. 

We can fall back on a universal master in this case (which could be replicated). It would 
have to have interfaces appropriate for readers coming to it with identifiers from any one 
of the historical update packages. If we say that clients must always quote their current 
update package level ("patch number") whenever they quote a set of identifiers, then the 
reader will know that and can get the appropriate resolution and thus correct data from 
the master. 

Note that when dealing with read-only data it is always possible to set up replicated 
servers and client-side caches to improve scalability and performance. 

2.15.7. Distributed Editing 
Whereas incremental publishing must be able to cope with clients which may number in 
hundreds of thousands who are largely out of control, our current requirements for 
distributed editing involve a few tens of editing clients which are under close control. 

It is the editing process which splits, merges and creates identifiers. 

Example: a mapping organisation has 20 groups working on different segments of data. 
These segments may be defined by tiles, irregular spatial boundaries or by theme (feature 
class).  

Each editor checks out a writeable segment from the common master database and works 
on it, checking versions of his segment back in from time to time. Each editor creates 
dirty feature identifiers which it has to reconcile with the master. It may reconcile its 
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segment by keeping a copy and updating the identifiers with those it gets from the master, 
but more likely it will just delete its local segment and re-check-out a new version of the 
segment from the master.  

After a while all editors have resolved their changes back into the master. At this point 
the master can be published. [Note that this means that the version network has achieved 
closure. This requirement will be relaxed later.] 

All the dirty identifiers never leave the organisation in which they were created and no 
editing client performs any value-added activity in which any identifier is used at all. As 
segments are checked back in, new identifiers are either kept or renumbered if they 
conflict with another, but they are never clean until the dataset as a whole is published 
(perhaps as an incremental update, perhaps as a whole). 

2.15.8. Responsibilities and compositions 
So long as a client operates on an identifier strictly according to either the read-only 
incremental publishing protocol or the distributed editing role, it can do both at once. So 
some of its identifiers (those it got from an incremental update from the master) are 
published and some (those it creates itself) are dirty. It can use the published ones in 
value added activities, but it can't use the dirty ones. It has to wait until it gets them back 
from the master in published form. 

2.15.9. Local cleanliness 
Alternatively, the editing client can use its own dirty identifiers if it takes full 
responsibility for them for its sub-clients who use them, i.e. it acts like a master which a 
whole subsidiary architecture of feature identifier update packets and identifier registries 
at its sub-clients. If you issue a dirty identifier, it is your responsibility to clean up 
afterwards. 

This introduces the notion of "local cleanliness". A sub-subclient would not be aware that 
it had a dirty identifier, and indeed, so long as it only talked to other sub-clients of the 
same client (or to it's master - which we call an editing-client), the identifier would be 
effectively published. It only appears dirty outside that little group. Everything is fine so 
long as that little group achieves local closure, i.e. eventually the editing client reconciles 
itself with its master and then cleans up all its sub-clients: then the sub-clients can be 
normal clients of the master.  

Dirtiness is thus a relative, not an absolute concept: it is only dirty outside the "isolation 
ward". This is OK so long as we maintain our context properly which is why we do need 
some Uniform Resource Name (URN) or handle system to keep track of who we are 
talking to. DNS itself would be sufficient (if awkward) because it can define machine 
aliases, but the extra level of indirection from a URN or handle system is well worth it 
[Sargent99]. 

2.15.10. Out of control copying 
How do we cope with out-of-control copying of data as we might find in the open 
Internet ?  

This is the situation where we cannot assume that a client has had all (or any) of the 
interim update packets, or where anyone copies a dataset from a client without re-
registering with the master. This is fundamentally always possible, even if we were to 
devise some Kerberos security architecture, if we do not use military-style no-write-down 
no-read-up controls which are impossible. 

This is the same problem as the "non tree client network" we discussed above, with the 
same solution, unless the uncontrolled copy was made of dirty data. In that case the 
original master won't be able to help, and the edit-update client may be unaware of the 
copy and may have reconciled all its sub-clients and deleted all historical records of dirty 
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identifiers. It will always delete them because that is the whole point of reconciliation, to 
save space in what otherwise would be an exponentially expanding identifier list. 

This remaining unresolvable problem will always be with us in some form: someone can 
always take a copy of data, change it in an arbitrary way, then give it to someone else and 
vanish. Thus the fact that we can't deal with this case is not important as no system can 
deal with it. 

2.15.11. Handles for servers 
The handle (URN) for a master which issues update packets needs to be written into the 
header of the packet so that a client which needs the next update always knows where to 
find it. 

The individual identifiers in the packet should also be annotated with their server's URN 
if they are being passed on from another master server. That is the same thing as saying 
that an update-editing client which put out its own dirty identifiers would use its own 
URN as a prefix for the dirty ones, while using its master's URN as a prefix for the 
published ones. Thus a sub-client within an "isolation ward" would in fact be able to tell 
the difference between globally published and locally published (globally dirty) 
identifiers. 

2.15.12. Identifier update packet 
What would an update packet look like ? The geodata part would be some established 
file-format which had feature identifiers, e.g. an object form of SDTS [Arctur98], or a set 
of OGC Simple Feature transactions. The identifier part of the packet might look use 
some XML language. 

2.15.13. Relationships 
Between which objects can we support relationships ? 

Easily between objects which are in the same update packet. 

Also between pre-existing objects and objects in the update packet after published 
identifiers have been resolved. Though if we have bidirectional relationships, this may be 
the same thing as the previous point since related objects would be updated. 

Any relationship which uses a dirty identifier is a dirty relationship and subject to the 
same usage constraints. 

2.15.14. GIS requirements 
What must a GIS be able to do in order to participate in this scheme? 

Simple. The minimum and maximum requirements are the same: it must support 
permanent, immutable feature identifiers within itself. Everything else, the identifier 
registries etc., can all be handled by external, add-on software which translates the 
identifiers into some internal form for the GIS and which can handle URNs to talk to 
master servers and read update packets. 

2.15.15. Last word 
The version control architecture described here is over-simple with a single binary 
distinction between published and dirty identifiers. OGC will eventually need a proper 
long-transaction protocol, version semantics etc. This is a short-cut: everything which 
really should be logically distinct and separately specified at different levels of 
abstraction has been bundled together for the sake of speed and simplicity. This is not a 
long-term solution, but it may be good enough for now. 

2.16. References to Section 2 
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3. The Abstract Model for Feature, Feature Identifier, Identifier Scope, 
Identifier Change Registry, Feature Repository and Feature 
Collection 

3.1. FT_Feature 
3.1.1. FT_FeatureType 

An FT_Feature is of one FT_FeatureType. An FT_Feature must yield its type on demand 
to an OpenGIS client in a ‘well known’ format. 

The term “well known” in this context means defined using some means commonly 
understandable by OpenGIS clients. This could be explicitly defined in the 
implementation specification but preferably some means available through the underlying 
distribution technology will be used . 

An FT_Feature may yield its type (when demanded) directly or by passing a reference to 
a ‘FT_FeatureType’ object. 

3.1.2. FT_FeatureAttribute 
An FT_Feature has associated FT_FeatureAttributes. Each FT_FeatureAttribute is has a 
value within the valid domain of the attribute. Names and types of FT_FeatureAttributes 

are defined by the classes in the AT_Attribute package they inherit from. 

The full range of sub-classes of
AT_Attribute reflects the range
of possible attribute types that
can be used on features and
relationships.

AT_IntegerAttribute

value : Integer
(from AT_Attribute)

AT_StringAttribute

value : String
(from AT_Attribute)

AT_XXXXAttribute

value : XXXX
(from AT_Attribute)

FT_IntegerFeatureAttribute FT_StringFeatureAttribute FT XXXXFeatureAttribute

FT_FeatureAttribute

Figure 3-1  The FT_FeatureAttribute 

A subset of the attributes of an FT_Feature may be geometric. This subset may, among 
other things, represent the spatial extent of the FT_Feature. This subset may be empty for 
FT_Features of some FT_FeatureTypes. In this specification, the UML takes precedence 
over text when the UML is more specific. 
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many others
.......

The domain of 'type' is an enumeration
of datatypes that can be used for
feature and relationship attributes.
These are essentially an agreed set of
simple datatypes together with
some geometic datatypes.
This is mirrored by the sub-classes of
AT_Attribute.

AT_AttributeType
name : String
type

AT_Attribute

AT_IntegerAttribute
value : Integer

AT_StringAttribute
value : String

AT_XXXXAttribute
value : XXXX

Figure 3-2  The AT_Attribute Package 
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the sub-class of
FT_FeatureAttribute
that is instantiated is defined by
FT_FeatureAttributeType.type

AT_AttributeType

name : String
type

(from AT_Attribute)

FT_FeatureAttributeTyp

FT_FeatureType
name : String

1

0..*

+defines
1

+has attribute type
0..*

FT_FeatureAttribute
10..*

+has type

1

+has instance

0..*

FT_Feature
10..*

+has type

1

+has instance

0..*

*

1

+has attribute
*

{cardinality is the same as
FT_FeatureType.has attribute
t }

+the feature
1

Figure 3-3  The FT_FeatureType  
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3.1.3. FT_FeatureIdentifier 
An FT_Feature has a single identifier that is unique within a single FT_IdentifierScope 
and, in general, independent of the value of any or all of its associated attributes  

Basing identity on a key of one or more attribute values, a technique sometimes used by 
RDBMSs, is not precluded. Such a technique, however, is not mandated. Many systems 
have a concept of identity that cannot be adequately addressed by a candidate key and 
this independence must be preserved across OpenGIS databases. Many of the uses of 
FT_FeatureIdentifiers, e.g. for incremental publishing or for relationships between 
FT_Features in different FT_IdentifierScopes, or the requirement for persistent, 
immutable identifiers, cannot be met by a candidate key approach without imposing 
severe usage limitations, e.g. read-only access forever. 

Requiring unique identity within a Scope does not allow for such devices as ‘temporary’ 
or 'alias' identities within the same Scope. It does allow for identification of temporary 
FT_Features: e.g. identity for FT_Features that only exist (and are therefore only 
reachable) within the context of a database session, i.e. in another Scope with limited 
persistence.  

3.1.4. FT_Feature Persistence 
An FT_Feature is generally persistent. An FT_Feature can be “reached” (accessed or a 
route to access returned) from its FT_LeafIdentifier. If this is no longer reachable, then 
the FT_Feature, if reached by other means, e.g. a query on attribute values, has to be 
considered to be a different FT_Feature with a different identifier. 

3.1.5. FT_Feature Instances 
An FT_Feature may also be referred to as An FT_Feature Instance.  

3.2. FT_Identifier  
3.2.1. Characteristics of FT_Identifiers 

An FT_Feature's identity is represented by An FT_Identifier. This may be either a leaf 
identifier (FT_LeafIdentifier) or a scoped identifier (FT_ScopedIdentifier). 

An FT_Identifier has meaning only within an FT_IdentifierScope (definition of 
identifier) 

A published FT_ScopedIdentifier of an FT_FEature, together with the 
FT_ScopedIdentifier of the FT_IdentifierScope,  can be used to refer to an FT_Feature or 
to assert an informal and uncontrolled relationship with an FT_Feature in a data 
repository which may have no management authority in common with the agency using 
the identifier. 
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FT_WellKnownScope

Every persistant
object has one Leaf
Identifier
and may have several
ScopedIdentifiers

A Scope resolves identifiers either to
objects (Leaf) or to other identifiers (Scoped)

Types and
relationships
schema
information
also needs
to be
persistant

This UML says that the top level
enclosed identifier is not opaque,
but we wish to say that it can be
opaque and it is obtained as a
result of the resolve() operation
on the Scope

FT_LeafIdentifier

FT_PersistentObject
identifier : FT_Identifier

1

1

1

1

FT_IdentifierScope

resolve() : Identifier
0..*1 0..*1

FT_Identifier

FT_ScopedIdentifier

resolve() : Identifier

0..*1 0..*1

0..*

1

0..*

1

1..*

1

1..*

1

1

0..1

1

0..1

resolve

FT_Feature

Figure 3-4. Scoped Identifiers 

3.3. FT_IdentifierScope 
3.3.1. Characteristics of FT_IdentifierScope   

An FT_IdentifierScope has a persistent FT_Identifier which represents itself. 

An FT_IdentifierScope exists within an environment. 

Any published FT_ScopedIdentifier must be with ultimate reference to an 
FT_WellKnownScope. 

An FT_WellKnownScope is a scope of scope identifiers. 

An FT_IdentifierScope is not an FT_FeatureCollection.  

An FT_Feature Collection is not an FT_IdentifierScope. 

3.3.2. Methods of FT_IdentifierScope   
Given an FT_Identifier within its scope, an FT_IdentifierScope object returns either an 
FT_LeafIdentifier or a  FT_ScopedIdentifier with the FT_IdentifierScope within which it 
has meaning ("resolve()" method). 

Given two FT_Identifiers, an FT_IdentifierScope object resolves them to a common 
scope, obtains a canonical form, and then responds by saying whether they are equal or 
not. ("isEqual()" method) Not all Scopes may be able to implement this fully or at all 
times. 

Given an FT_Identifier, determine if it is an FT_LeafIdentifier in this 
FT_IdentifierScope.  
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Given an FT_LeafIdentifier, return some means of accessing or obtaining the object, e.g. 
a reference to or description of the repository holding the object.  

Given an FT_Feature within this FT_IdentifierScope, ask for its FT_LeafIdentifier in this 
scope.  

Given an FT_Feature within this FT_IdentifierScope, ask for a public, publishable 
FT_ScopedIdentifier that contains all the scopes out to a Well Known Scope. (The 
"composeId()" method).  

Implement some procedure for maintaining consistency for published 
FT_ScopedIdentifiers through an FT_IdentifierChangeRegistry architecture or some 
equivalent mechanism. 

3.4. FT_IdentifierChangeRegistry  
3.4.1. Change Registry Characteristics 

An FT_IdentifierChangeRegistry is a persistently available cache which records which 
FT_Identifiers were replaced or retired. It only need contain information on published 
FT_ScopedIdentifiers. 

3.5. FT_FeatureRepository  
3.5.1. FT_FeatureRepository Characteristics 

An FT_FeatureRepository is an FT_FeatureCollection with certain responsibilities for the 
issuing and maintenance of FT_Identifiers.  

An FT_FeatureRepository is an FT_FeatureCollection which implements repository 
functions.  

Given an FT_LeafIdentifier which we are sure identifies an FT_Feature and not some 
other kind of object, return us the FT_Feature or an interface to it.  

An FT_FeatureRepository manages access to FT_Features. 

An FT_FeatureRepository collaborates with FT_IdentifierScopes and 
FT_IdentifierChangeRegistries (or similar) to maintain published FT_Identifiers when 
such identifiers change. 

3.6. FT_FeatureType  
3.6.1. FT_FeatureType Characteristics 

Every FT_Feature instance has an FT_FeatureType.  

Each FT_FeatureType has an FT_Identifier. 

An FT_FeatureType is defined by a set of attribute definitions and role definitions (see 
Topic 8). Either set (or both) may be the null set. 

Each FT_FeatureAttributeType definition has a name and a type (inherited from 
AT_AttributeType). The type is a defined domain of valid attribute values. Attribute 
types are either ‘well known’ or are able to expose their structure in a ‘well known’ 
format on demand. They may be simple basic types (longs, floats, strings, etc.) or 
geometries. They may not be FT_Feature identifiers (e.g. a reference to an FT_Feature of 
a particular type), such inter-FT_Feature references should use the Relationships facilities 
described in Topic 8. 

An FT_FeatureType may also define a set of other FT_FeatureTypes for which it is 
substitutable. Whether this is achieved through single or multiple inheritance, aggregation 
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or some other means is an implementation issue. For example, if FT_FeatureType B is 
defined as being substitutable for FT_FeatureType A then each instance of Type B can be 
used wherever an instance of Type A is permitted, e.g. in a relationship (see Topic 8). 

The FT_FeatureAttributeType set of an FT_FeatureType is a superset of the 
corresponding sets for all FT_FeatureType for which it is substitutable.  

3.7. FT_FeatureCollection  
3.7.1. Characteristics of FT_FeatureCollections 

An FT_FeatureCollection is an FT_Feature instance that groups other FT_Features. 

As an FT_Feature Collection is also an FT_Feature, FT_FeatureCollections have 
FT_FeatureType, FT_Identifier, an associated set of FT_FeatureAttributes. There are 
many examples of an FT_FeatureCollection where it seems counter-intuitive to describe 
it as an FT_Feature (e.g. scope of a query). The countering argument is that many of the 
mechanisms defined for FT_Features (attributes, type) are equally applicable to 
FT_FeatureCollections and that defining an FT_FeatureCollection as an FT_Feature 
allows for the construction of complex hierarchies or networks of FT_Features. 

Uses of FT_FeatureCollections include the representation of a physical or logical 
repository of FT_Features (an FT_FeatureRepository), a complex or composite 
FT_Feature; the result of a query; the scope of a query; an ad-hoc collection created for a 
particular purpose. An FT_FeatureCollection representing a persistent complex or 
composite FT_Feature should use explicit FT_FeatureRelationships (see Topic 8) to 
represent this. 

FT_FeatureCollections may be transient or persistent. 



4. Future Work 
• As Implementation Specifications evolve, this topic must be edited to maintain 

alignment with them. 

• Reconcile this with the Topic 13 and the Catalog proposals. 

• Much of the discussion of Feature in the first half of section 2 concerns Geometries, 
which are an attribute domain for Features. This material should be removed to 
Topic 1. 

• The whole area of schema discovery needs to be tackled, e.g. what FeatureTypes are 
allowed in any dataset, what attribute domains are supported etc. This overlaps with 
the Catalog work (Topic 13) and is particularly relevant for Feature Relationships 
(Topic 8). When we describe schema discovery interfaces we must be careful not to 
rule out those GISs which support dynamic schema updates. 

• The 9-layer model has significant flaws, in particular the level at which we put 
Geometry is not in accord with the specifications we wish to produce. 

• An FT_FeatureRepository (Datastore) is an FT_FeatureCollection with certain 
responsibilities for the issuing and maintenance of FT_Identifiers. Do we need some 
contraints on the FT_FeatureTypes of FT_FeatureCollections ? 

• More work on FT_FeatureCollections is needed if we wish to issue RFPs requiring 
them. What are the fundamental classes and subclasses of Feature Collection. How 
do they behave? What are the relations between them and FT_Features, Catalogs, 
Metadata, Schema, and other objects, and between themselves?   

• In future, an FT_Feature may participate in various processes. The set of valid 
processes in which it may participate will be defined (directly of indirectly) by the 
FT_Feature’s FT_FeatureType. This concept of process participation is intended to 
be broad enough to include object methods, static functions and stored procedures.  
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5. Appendix A:  Well Known Structures 

5.1. Well-Known Structures 
Feature Geometry (that is, the AttributeValue for the AttributeName “OGCGeometry”) 
have their WKS detailed in Topic 1: Feature Geometry. [1] 

Coordinate reference systems will have their WKS listed in Topic 2: Coordinate 
reference Systems. [2] 

Other WKS associated with Features are to be found in the Implementation 
Specifications for OGC Simple Features. [3] 

Identifier Update Packets may need a WKS; which is more likely to be an XML encoding 
than a binary format. 

5.2. References to Appendix A 
[1] Open Geospatial Consortium and ISO, 2001. Abstract Specification Topic 1: Feature 

Geometry. Available at http://www.opengeospatial.org/standards/as  
[2] Open Geospatial Consortium and ISO, 2004. Abstract Specification Topic 2: Spatial 

Reference by Coordinates. Available at http://www.opengeospatial.org/standards/as  
[3] Open Geospatial Consortium, 2006. The OpenGIS® Simple Features Implementation 

Standard Part 1 - Common Architecture. Available at 
http://www.opengeospatial.org/standards/sfa
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6. Appendix B. The ISO TC211 General Feature Model 
The ISO TC211 15046 Part 9: Rules For Application Schema standard [1] describes a 
general feature model that places the geometry in the context of its use to describe the 
location of features. Although this model does not overtly affect the geometry model, it 
does form the basis for assumptions on the use of this model in individual application 
implementations. Figure 6-1 places the feature packages in context with the geometry 
packages. 

Feature Relations
+ FeatureTopolgy
+ FeatureRelationship

Gen Feature
(from Logical View)
+ Feature

Feature Attributes
+ FeatureAttribute
+ LocationalAttribute
+ TemporalObject
+ SpatialAttribute
+ NonSpatialAttribute
+ TemporalAttribute
+ FeatureFunction

Geometry
(from Logical View)

Positioning
(from Logical View)
+ GeographicalIdentifier
+ Location
+ SpatialReferenceSystem
+ DirectPosition

 
Figure 6-1. Feature Model Packages (from Rules for Application Schemas) 

Figure 6-2: General Feature Model (from Rules for Application Schemas) details the 
internal structure of the feature packages as derived from Part 9: Rules For Application 
Schema [1]. 
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FeatureRelationship
(from Feature Relations)

FeatureTopolgy
(from Feature Relations)

FeatureAttribute

+ name : Character
+ valueType : Type

(fr om Feature Att ributes)

Feature

0..*

1

0..*

1

Attributes

FeatureFunction
(from Feature Attributes)

0..*0..*

Functions

LocationalAttribute
(from Feature Attributes)

GeographicalIdentifier
(fr om Positioning)

Value

NonSpatialAttribute
(f rom Feature Attributes)

SpatialAttribute
(from Feature Attributes)

GM_Object
(f rom Geometr y)

<<Interface>>

Value

TemporalAttribute
(from Feature Attributes)

TemporalObject
(f rom Feature Attributes)

Value

 
Figure 6-2: General Feature Model (from Rules for Application Schemas) 

6.1. References 
[1] International Standard ISO 15046-9, Geographic information — Part 9: Rules for 

application schema, Technical Committee ISO/TC 211 Geographic 
Information/Geomatics. 
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